From 7c4ec8a768c7dfd3124c6b68805031367a80a890 Mon Sep 17 00:00:00 2001 From: Hamilton Kibbe Date: Tue, 13 Dec 2016 00:01:05 -0500 Subject: Clip context to axis- and pixel- aligned bounds before rendering primitives. Significantly speeds up render --- examples/cairo_bottom.png | Bin 42847 -> 42180 bytes examples/cairo_example.png | Bin 100397 -> 100252 bytes gerber/render/cairo_backend.py | 1173 +++++++++++++++++++++------------------- 3 files changed, 610 insertions(+), 563 deletions(-) diff --git a/examples/cairo_bottom.png b/examples/cairo_bottom.png index 03e40e7..70f7551 100644 Binary files a/examples/cairo_bottom.png and b/examples/cairo_bottom.png differ diff --git a/examples/cairo_example.png b/examples/cairo_example.png index 76e3bff..4b4ee0a 100644 Binary files a/examples/cairo_example.png and b/examples/cairo_example.png differ diff --git a/gerber/render/cairo_backend.py b/gerber/render/cairo_backend.py index a2baa47..e6af67f 100644 --- a/gerber/render/cairo_backend.py +++ b/gerber/render/cairo_backend.py @@ -1,563 +1,610 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -# Copyright 2014 Hamilton Kibbe - -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at - -# http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - -# See the License for the specific language governing permissions and -# limitations under the License. - -try: - import cairo -except ImportError: - import cairocffi as cairo - -from operator import mul -import tempfile -import copy -import os - -from .render import GerberContext, RenderSettings -from .theme import THEMES -from ..primitives import * -from ..utils import rotate_point - -from io import BytesIO - - -class GerberCairoContext(GerberContext): - - def __init__(self, scale=300): - super(GerberCairoContext, self).__init__() - self.scale = (scale, scale) - self.surface = None - self.surface_buffer = None - self.ctx = None - self.active_layer = None - self.active_matrix = None - self.output_ctx = None - self.has_bg = False - self.origin_in_inch = None - self.size_in_inch = None - self._xform_matrix = None - self._render_count = 0 - - @property - def origin_in_pixels(self): - return (self.scale_point(self.origin_in_inch) - if self.origin_in_inch is not None else (0.0, 0.0)) - - @property - def size_in_pixels(self): - return (self.scale_point(self.size_in_inch) - if self.size_in_inch is not None else (0.0, 0.0)) - - def set_bounds(self, bounds, new_surface=False): - origin_in_inch = (bounds[0][0], bounds[1][0]) - size_in_inch = (abs(bounds[0][1] - bounds[0][0]), - abs(bounds[1][1] - bounds[1][0])) - size_in_pixels = self.scale_point(size_in_inch) - self.origin_in_inch = origin_in_inch if self.origin_in_inch is None else self.origin_in_inch - self.size_in_inch = size_in_inch if self.size_in_inch is None else self.size_in_inch - self._xform_matrix = cairo.Matrix(xx=1.0, yy=-1.0, - x0=-self.origin_in_pixels[0], - y0=self.size_in_pixels[1]) - if (self.surface is None) or new_surface: - self.surface_buffer = tempfile.NamedTemporaryFile() - self.surface = cairo.SVGSurface(self.surface_buffer, size_in_pixels[0], size_in_pixels[1]) - self.output_ctx = cairo.Context(self.surface) - - def render_layer(self, layer, filename=None, settings=None, bgsettings=None, - verbose=False): - if settings is None: - settings = THEMES['default'].get(layer.layer_class, RenderSettings()) - if bgsettings is None: - bgsettings = THEMES['default'].get('background', RenderSettings()) - - if self._render_count == 0: - if verbose: - print('[Render]: Rendering Background.') - self.clear() - self.set_bounds(layer.bounds) - self._paint_background(bgsettings) - if verbose: - print('[Render]: Rendering {} Layer.'.format(layer.layer_class)) - self._render_count += 1 - self._render_layer(layer, settings) - if filename is not None: - self.dump(filename, verbose) - - def render_layers(self, layers, filename, theme=THEMES['default'], - verbose=False): - """ Render a set of layers - """ - self.clear() - bgsettings = theme['background'] - for layer in layers: - settings = theme.get(layer.layer_class, RenderSettings()) - self.render_layer(layer, settings=settings, bgsettings=bgsettings, - verbose=verbose) - self.dump(filename, verbose) - - def dump(self, filename=None, verbose=False): - """ Save image as `filename` - """ - try: - is_svg = os.path.splitext(filename.lower())[1] == '.svg' - except: - is_svg = False - if verbose: - print('[Render]: Writing image to {}'.format(filename)) - if is_svg: - self.surface.finish() - self.surface_buffer.flush() - with open(filename, "w") as f: - self.surface_buffer.seek(0) - f.write(self.surface_buffer.read()) - f.flush() - else: - return self.surface.write_to_png(filename) - - def dump_str(self): - """ Return a byte-string containing the rendered image. - """ - fobj = BytesIO() - self.surface.write_to_png(fobj) - return fobj.getvalue() - - def dump_svg_str(self): - """ Return a string containg the rendered SVG. - """ - self.surface.finish() - self.surface_buffer.flush() - return self.surface_buffer.read() - - def clear(self): - self.surface = None - self.output_ctx = None - self.has_bg = False - self.origin_in_inch = None - self.size_in_inch = None - self._xform_matrix = None - self._render_count = 0 - if hasattr(self.surface_buffer, 'close'): - self.surface_buffer.close() - self.surface_buffer = None - - def _new_mask(self): - class Mask: - def __enter__(msk): - size_in_pixels = self.size_in_pixels - msk.surface = cairo.SVGSurface(None, size_in_pixels[0], - size_in_pixels[1]) - msk.ctx = cairo.Context(msk.surface) - msk.ctx.translate(-self.origin_in_pixels[0], -self.origin_in_pixels[1]) - return msk - - - def __exit__(msk, exc_type, exc_val, traceback): - if hasattr(msk.surface, 'finish'): - msk.surface.finish() - - return Mask() - - def _render_layer(self, layer, settings): - self.invert = settings.invert - # Get a new clean layer to render on - self._new_render_layer(mirror=settings.mirror) - for prim in layer.primitives: - self.render(prim) - # Add layer to image - self._flatten(settings.color, settings.alpha) - - def _render_line(self, line, color): - start = [pos * scale for pos, scale in zip(line.start, self.scale)] - end = [pos * scale for pos, scale in zip(line.end, self.scale)] - self.ctx.set_operator(cairo.OPERATOR_OVER - if (not self.invert) - and line.level_polarity == 'dark' - else cairo.OPERATOR_CLEAR) - with self._new_mask() as mask: - if isinstance(line.aperture, Circle): - width = line.aperture.diameter - mask.ctx.set_line_width(width * self.scale[0]) - mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND) - mask.ctx.move_to(*start) - mask.ctx.line_to(*end) - mask.ctx.stroke() - - elif hasattr(line, 'vertices') and line.vertices is not None: - points = [self.scale_point(x) for x in line.vertices] - mask.ctx.set_line_width(0) - mask.ctx.move_to(*points[-1]) - for point in points: - mask.ctx.line_to(*point) - mask.ctx.fill() - self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) - - def _render_arc(self, arc, color): - center = self.scale_point(arc.center) - start = self.scale_point(arc.start) - end = self.scale_point(arc.end) - radius = self.scale[0] * arc.radius - two_pi = 2 * math.pi - angle1 = (arc.start_angle + two_pi) % two_pi - angle2 = (arc.end_angle + two_pi) % two_pi - if angle1 == angle2 and arc.quadrant_mode != 'single-quadrant': - # Make the angles slightly different otherwise Cario will draw nothing - angle2 -= 0.000000001 - if isinstance(arc.aperture, Circle): - width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001 - else: - width = max(arc.aperture.width, arc.aperture.height, 0.001) - - self.ctx.set_operator(cairo.OPERATOR_OVER - if (not self.invert) - and arc.level_polarity == 'dark' - else cairo.OPERATOR_CLEAR) - - with self._new_mask() as mask: - mask.ctx.set_line_width(width * self.scale[0]) - mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND if isinstance(arc.aperture, Circle) else cairo.LINE_CAP_SQUARE) - mask.ctx.move_to(*start) # You actually have to do this... - if arc.direction == 'counterclockwise': - mask.ctx.arc(*center, radius=radius, angle1=angle1, angle2=angle2) - else: - mask.ctx.arc_negative(*center, radius=radius, - angle1=angle1, angle2=angle2) - mask.ctx.move_to(*end) # ...lame - mask.ctx.stroke() - - #if isinstance(arc.aperture, Rectangle): - # print("Flash Rectangle Ends") - # print(arc.aperture.rotation * 180/math.pi) - # rect = arc.aperture - # width = self.scale[0] * rect.width - # height = self.scale[1] * rect.height - # for point, angle in zip((start, end), (angle1, angle2)): - # print("{} w {} h{}".format(point, rect.width, rect.height)) - # mask.ctx.rectangle(point[0] - width/2.0, - # point[1] - height/2.0, width, height) - # mask.ctx.fill() - - self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) - - - def _render_region(self, region, color): - self.ctx.set_operator(cairo.OPERATOR_OVER - if (not self.invert) and region.level_polarity == 'dark' - else cairo.OPERATOR_CLEAR) - with self._new_mask() as mask: - mask.ctx.set_line_width(0) - mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND) - mask.ctx.move_to(*self.scale_point(region.primitives[0].start)) - for prim in region.primitives: - if isinstance(prim, Line): - mask.ctx.line_to(*self.scale_point(prim.end)) - else: - center = self.scale_point(prim.center) - radius = self.scale[0] * prim.radius - angle1 = prim.start_angle - angle2 = prim.end_angle - if prim.direction == 'counterclockwise': - mask.ctx.arc(*center, radius=radius, - angle1=angle1, angle2=angle2) - else: - mask.ctx.arc_negative(*center, radius=radius, - angle1=angle1, angle2=angle2) - mask.ctx.fill() - self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) - - def _render_circle(self, circle, color): - center = self.scale_point(circle.position) - self.ctx.set_operator(cairo.OPERATOR_OVER - if (not self.invert) - and circle.level_polarity == 'dark' - else cairo.OPERATOR_CLEAR) - - with self._new_mask() as mask: - mask.ctx.set_line_width(0) - mask.ctx.arc(center[0], - center[1], - radius=(circle.radius * self.scale[0]), - angle1=0, - angle2=(2 * math.pi)) - mask.ctx.fill() - - if hasattr(circle, 'hole_diameter') and circle.hole_diameter > 0: - mask.ctx.set_operator(cairo.OPERATOR_CLEAR) - mask.ctx.arc(center[0], - center[1], - radius=circle.hole_radius * self.scale[0], - angle1=0, - angle2=2 * math.pi) - mask.ctx.fill() - - if (hasattr(circle, 'hole_width') and hasattr(circle, 'hole_height') - and circle.hole_width > 0 and circle.hole_height > 0): - mask.ctx.set_operator(cairo.OPERATOR_CLEAR - if circle.level_polarity == 'dark' - and (not self.invert) - else cairo.OPERATOR_OVER) - width, height = self.scale_point((circle.hole_width, circle.hole_height)) - lower_left = rotate_point( - (center[0] - width / 2.0, center[1] - height / 2.0), - circle.rotation, center) - lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0), - circle.rotation, center) - upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0), - circle.rotation, center) - upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0), - circle.rotation, center) - points = (lower_left, lower_right, upper_right, upper_left) - mask.ctx.move_to(*points[-1]) - for point in points: - mask.ctx.line_to(*point) - mask.ctx.fill() - - self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) - - - def _render_rectangle(self, rectangle, color): - lower_left = self.scale_point(rectangle.lower_left) - width, height = tuple([abs(coord) for coord in - self.scale_point((rectangle.width, - rectangle.height))]) - self.ctx.set_operator(cairo.OPERATOR_OVER - if (not self.invert) - and rectangle.level_polarity == 'dark' - else cairo.OPERATOR_CLEAR) - with self._new_mask() as mask: - - mask.ctx.set_line_width(0) - mask.ctx.rectangle(*lower_left, width=width, height=height) - mask.ctx.fill() - - center = self.scale_point(rectangle.position) - if rectangle.hole_diameter > 0: - # Render the center clear - mask.ctx.set_operator(cairo.OPERATOR_CLEAR - if rectangle.level_polarity == 'dark' - and (not self.invert) - else cairo.OPERATOR_OVER) - - mask.ctx.arc(center[0], center[1], - radius=rectangle.hole_radius * self.scale[0], angle1=0, - angle2=2 * math.pi) - mask.ctx.fill() - - if rectangle.hole_width > 0 and rectangle.hole_height > 0: - mask.ctx.set_operator(cairo.OPERATOR_CLEAR - if rectangle.level_polarity == 'dark' - and (not self.invert) - else cairo.OPERATOR_OVER) - width, height = self.scale_point((rectangle.hole_width, rectangle.hole_height)) - lower_left = rotate_point((center[0] - width/2.0, center[1] - height/2.0), rectangle.rotation, center) - lower_right = rotate_point((center[0] + width/2.0, center[1] - height/2.0), rectangle.rotation, center) - upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0), rectangle.rotation, center) - upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0), rectangle.rotation, center) - points = (lower_left, lower_right, upper_right, upper_left) - mask.ctx.move_to(*points[-1]) - for point in points: - mask.ctx.line_to(*point) - mask.ctx.fill() - - self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) - - def _render_obround(self, obround, color): - self.ctx.set_operator(cairo.OPERATOR_OVER - if (not self.invert) - and obround.level_polarity == 'dark' - else cairo.OPERATOR_CLEAR) - with self._new_mask() as mask: - mask.ctx.set_line_width(0) - - # Render circles - for circle in (obround.subshapes['circle1'], obround.subshapes['circle2']): - center = self.scale_point(circle.position) - mask.ctx.arc(center[0], - center[1], - radius=(circle.radius * self.scale[0]), - angle1=0, - angle2=(2 * math.pi)) - mask.ctx.fill() - - # Render Rectangle - rectangle = obround.subshapes['rectangle'] - lower_left = self.scale_point(rectangle.lower_left) - width, height = tuple([abs(coord) for coord in - self.scale_point((rectangle.width, - rectangle.height))]) - mask.ctx.rectangle(*lower_left, width=width, height=height) - mask.ctx.fill() - - center = self.scale_point(obround.position) - if obround.hole_diameter > 0: - # Render the center clear - mask.ctx.set_operator(cairo.OPERATOR_CLEAR) - mask.ctx.arc(center[0], center[1], - radius=obround.hole_radius * self.scale[0], angle1=0, - angle2=2 * math.pi) - mask.ctx.fill() - - if obround.hole_width > 0 and obround.hole_height > 0: - mask.ctx.set_operator(cairo.OPERATOR_CLEAR - if rectangle.level_polarity == 'dark' - and (not self.invert) - else cairo.OPERATOR_OVER) - width, height =self.scale_point((obround.hole_width, obround.hole_height)) - lower_left = rotate_point((center[0] - width / 2.0, center[1] - height / 2.0), - obround.rotation, center) - lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0), - obround.rotation, center) - upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0), - obround.rotation, center) - upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0), - obround.rotation, center) - points = (lower_left, lower_right, upper_right, upper_left) - mask.ctx.move_to(*points[-1]) - for point in points: - mask.ctx.line_to(*point) - mask.ctx.fill() - - self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) - - def _render_polygon(self, polygon, color): - self.ctx.set_operator(cairo.OPERATOR_OVER - if (not self.invert) - and polygon.level_polarity == 'dark' - else cairo.OPERATOR_CLEAR) - with self._new_mask() as mask: - - vertices = polygon.vertices - mask.ctx.set_line_width(0) - mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND) - # Start from before the end so it is easy to iterate and make sure - # it is closed - mask.ctx.move_to(*self.scale_point(vertices[-1])) - for v in vertices: - mask.ctx.line_to(*self.scale_point(v)) - mask.ctx.fill() - - center = self.scale_point(polygon.position) - if polygon.hole_radius > 0: - # Render the center clear - mask.ctx.set_operator(cairo.OPERATOR_CLEAR - if polygon.level_polarity == 'dark' - and (not self.invert) - else cairo.OPERATOR_OVER) - mask.ctx.set_line_width(0) - mask.ctx.arc(center[0], - center[1], - polygon.hole_radius * self.scale[0], 0, 2 * math.pi) - mask.ctx.fill() - - if polygon.hole_width > 0 and polygon.hole_height > 0: - mask.ctx.set_operator(cairo.OPERATOR_CLEAR - if polygon.level_polarity == 'dark' - and (not self.invert) - else cairo.OPERATOR_OVER) - width, height = self.scale_point((polygon.hole_width, polygon.hole_height)) - lower_left = rotate_point((center[0] - width / 2.0, center[1] - height / 2.0), - polygon.rotation, center) - lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0), - polygon.rotation, center) - upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0), - polygon.rotation, center) - upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0), - polygon.rotation, center) - points = (lower_left, lower_right, upper_right, upper_left) - mask.ctx.move_to(*points[-1]) - for point in points: - mask.ctx.line_to(*point) - mask.ctx.fill() - - self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) - - def _render_drill(self, circle, color=None): - color = color if color is not None else self.drill_color - self._render_circle(circle, color) - - def _render_slot(self, slot, color): - start = map(mul, slot.start, self.scale) - end = map(mul, slot.end, self.scale) - - width = slot.diameter - - self.ctx.set_operator(cairo.OPERATOR_OVER - if slot.level_polarity == 'dark' and - (not self.invert) else cairo.OPERATOR_CLEAR) - with self._new_mask() as mask: - mask.ctx.set_line_width(width * self.scale[0]) - mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND) - mask.ctx.move_to(*start) - mask.ctx.line_to(*end) - mask.ctx.stroke() - self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) - - def _render_amgroup(self, amgroup, color): - for primitive in amgroup.primitives: - self.render(primitive) - - def _render_test_record(self, primitive, color): - position = [pos + origin for pos, origin in - zip(primitive.position, self.origin_in_inch)] - self.ctx.select_font_face( - 'monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD) - self.ctx.set_font_size(13) - self._render_circle(Circle(position, 0.015), color) - self.ctx.set_operator(cairo.OPERATOR_OVER - if primitive.level_polarity == 'dark' and - (not self.invert) else cairo.OPERATOR_CLEAR) - self.ctx.move_to(*[self.scale[0] * (coord + 0.015) for coord in position]) - self.ctx.scale(1, -1) - self.ctx.show_text(primitive.net_name) - self.ctx.scale(1, -1) - - def _new_render_layer(self, color=None, mirror=False): - size_in_pixels = self.scale_point(self.size_in_inch) - matrix = copy.copy(self._xform_matrix) - layer = cairo.SVGSurface(None, size_in_pixels[0], size_in_pixels[1]) - ctx = cairo.Context(layer) - - if self.invert: - ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) - ctx.set_operator(cairo.OPERATOR_OVER) - ctx.paint() - if mirror: - matrix.xx = -1.0 - matrix.x0 = self.origin_in_pixels[0] + self.size_in_pixels[0] - self.ctx = ctx - self.ctx.set_matrix(matrix) - self.active_layer = layer - self.active_matrix = matrix - - - def _flatten(self, color=None, alpha=None): - color = color if color is not None else self.color - alpha = alpha if alpha is not None else self.alpha - self.output_ctx.set_source_rgba(*color, alpha=alpha) - self.output_ctx.mask_surface(self.active_layer) - self.ctx = None - self.active_layer = None - self.active_matrix = None - - def _paint_background(self, settings=None): - color = settings.color if settings is not None else self.background_color - alpha = settings.alpha if settings is not None else 1.0 - if not self.has_bg: - self.has_bg = True - self.output_ctx.set_source_rgba(*color, alpha=alpha) - self.output_ctx.paint() - - def scale_point(self, point): - return tuple([coord * scale for coord, scale in zip(point, self.scale)]) +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +# Copyright 2014 Hamilton Kibbe + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + +# See the License for the specific language governing permissions and +# limitations under the License. + +try: + import cairo +except ImportError: + import cairocffi as cairo + +from operator import mul +import tempfile +import copy +import os + +from .render import GerberContext, RenderSettings +from .theme import THEMES +from ..primitives import * +from ..utils import rotate_point + +from io import BytesIO + + +class GerberCairoContext(GerberContext): + + def __init__(self, scale=300): + super(GerberCairoContext, self).__init__() + self.scale = (scale, scale) + self.surface = None + self.surface_buffer = None + self.ctx = None + self.active_layer = None + self.active_matrix = None + self.output_ctx = None + self.has_bg = False + self.origin_in_inch = None + self.size_in_inch = None + self._xform_matrix = None + self._render_count = 0 + + @property + def origin_in_pixels(self): + return (self.scale_point(self.origin_in_inch) + if self.origin_in_inch is not None else (0.0, 0.0)) + + @property + def size_in_pixels(self): + return (self.scale_point(self.size_in_inch) + if self.size_in_inch is not None else (0.0, 0.0)) + + def set_bounds(self, bounds, new_surface=False): + origin_in_inch = (bounds[0][0], bounds[1][0]) + size_in_inch = (abs(bounds[0][1] - bounds[0][0]), + abs(bounds[1][1] - bounds[1][0])) + size_in_pixels = self.scale_point(size_in_inch) + self.origin_in_inch = origin_in_inch if self.origin_in_inch is None else self.origin_in_inch + self.size_in_inch = size_in_inch if self.size_in_inch is None else self.size_in_inch + self._xform_matrix = cairo.Matrix(xx=1.0, yy=-1.0, + x0=-self.origin_in_pixels[0], + y0=self.size_in_pixels[1]) + if (self.surface is None) or new_surface: + self.surface_buffer = tempfile.NamedTemporaryFile() + self.surface = cairo.SVGSurface(self.surface_buffer, size_in_pixels[0], size_in_pixels[1]) + self.output_ctx = cairo.Context(self.surface) + + def render_layer(self, layer, filename=None, settings=None, bgsettings=None, + verbose=False): + if settings is None: + settings = THEMES['default'].get(layer.layer_class, RenderSettings()) + if bgsettings is None: + bgsettings = THEMES['default'].get('background', RenderSettings()) + + if self._render_count == 0: + if verbose: + print('[Render]: Rendering Background.') + self.clear() + self.set_bounds(layer.bounds) + self._paint_background(bgsettings) + if verbose: + print('[Render]: Rendering {} Layer.'.format(layer.layer_class)) + self._render_count += 1 + self._render_layer(layer, settings) + if filename is not None: + self.dump(filename, verbose) + + def render_layers(self, layers, filename, theme=THEMES['default'], + verbose=False): + """ Render a set of layers + """ + self.clear() + bgsettings = theme['background'] + for layer in layers: + settings = theme.get(layer.layer_class, RenderSettings()) + self.render_layer(layer, settings=settings, bgsettings=bgsettings, + verbose=verbose) + self.dump(filename, verbose) + + def dump(self, filename=None, verbose=False): + """ Save image as `filename` + """ + try: + is_svg = os.path.splitext(filename.lower())[1] == '.svg' + except: + is_svg = False + if verbose: + print('[Render]: Writing image to {}'.format(filename)) + if is_svg: + self.surface.finish() + self.surface_buffer.flush() + with open(filename, "w") as f: + self.surface_buffer.seek(0) + f.write(self.surface_buffer.read()) + f.flush() + else: + return self.surface.write_to_png(filename) + + def dump_str(self): + """ Return a byte-string containing the rendered image. + """ + fobj = BytesIO() + self.surface.write_to_png(fobj) + return fobj.getvalue() + + def dump_svg_str(self): + """ Return a string containg the rendered SVG. + """ + self.surface.finish() + self.surface_buffer.flush() + return self.surface_buffer.read() + + def clear(self): + self.surface = None + self.output_ctx = None + self.has_bg = False + self.origin_in_inch = None + self.size_in_inch = None + self._xform_matrix = None + self._render_count = 0 + self.surface_buffer = None + + def _new_mask(self): + class Mask: + def __enter__(msk): + size_in_pixels = self.size_in_pixels + msk.surface = cairo.SVGSurface(None, size_in_pixels[0], + size_in_pixels[1]) + msk.ctx = cairo.Context(msk.surface) + msk.ctx.translate(-self.origin_in_pixels[0], -self.origin_in_pixels[1]) + return msk + + + def __exit__(msk, exc_type, exc_val, traceback): + if hasattr(msk.surface, 'finish'): + msk.surface.finish() + + return Mask() + + def _render_layer(self, layer, settings): + self.invert = settings.invert + # Get a new clean layer to render on + self._new_render_layer(mirror=settings.mirror) + for prim in layer.primitives: + self.render(prim) + # Add layer to image + self._flatten(settings.color, settings.alpha) + + def _render_line(self, line, color): + start = self.scale_point(line.start) + end = self.scale_point(line.end) + self.ctx.set_operator(cairo.OPERATOR_OVER + if (not self.invert) + and line.level_polarity == 'dark' + else cairo.OPERATOR_CLEAR) + + with self._clip_primitive(line): + with self._new_mask() as mask: + if isinstance(line.aperture, Circle): + width = line.aperture.diameter + mask.ctx.set_line_width(width * self.scale[0]) + mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND) + mask.ctx.move_to(*start) + mask.ctx.line_to(*end) + mask.ctx.stroke() + + elif hasattr(line, 'vertices') and line.vertices is not None: + points = [self.scale_point(x) for x in line.vertices] + mask.ctx.set_line_width(0) + mask.ctx.move_to(*points[-1]) + for point in points: + mask.ctx.line_to(*point) + mask.ctx.fill() + self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) + + def _render_arc(self, arc, color): + center = self.scale_point(arc.center) + start = self.scale_point(arc.start) + end = self.scale_point(arc.end) + radius = self.scale[0] * arc.radius + two_pi = 2 * math.pi + angle1 = (arc.start_angle + two_pi) % two_pi + angle2 = (arc.end_angle + two_pi) % two_pi + if angle1 == angle2 and arc.quadrant_mode != 'single-quadrant': + # Make the angles slightly different otherwise Cario will draw nothing + angle2 -= 0.000000001 + if isinstance(arc.aperture, Circle): + width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001 + else: + width = max(arc.aperture.width, arc.aperture.height, 0.001) + + self.ctx.set_operator(cairo.OPERATOR_OVER + if (not self.invert) + and arc.level_polarity == 'dark' + else cairo.OPERATOR_CLEAR) + with self._clip_primitive(arc): + with self._new_mask() as mask: + mask.ctx.set_line_width(width * self.scale[0]) + mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND if isinstance(arc.aperture, Circle) else cairo.LINE_CAP_SQUARE) + mask.ctx.move_to(*start) # You actually have to do this... + if arc.direction == 'counterclockwise': + mask.ctx.arc(*center, radius=radius, angle1=angle1, angle2=angle2) + else: + mask.ctx.arc_negative(*center, radius=radius, + angle1=angle1, angle2=angle2) + mask.ctx.move_to(*end) # ...lame + mask.ctx.stroke() + + #if isinstance(arc.aperture, Rectangle): + # print("Flash Rectangle Ends") + # print(arc.aperture.rotation * 180/math.pi) + # rect = arc.aperture + # width = self.scale[0] * rect.width + # height = self.scale[1] * rect.height + # for point, angle in zip((start, end), (angle1, angle2)): + # print("{} w {} h{}".format(point, rect.width, rect.height)) + # mask.ctx.rectangle(point[0] - width/2.0, + # point[1] - height/2.0, width, height) + # mask.ctx.fill() + + self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) + + def _render_region(self, region, color): + self.ctx.set_operator(cairo.OPERATOR_OVER + if (not self.invert) and region.level_polarity == 'dark' + else cairo.OPERATOR_CLEAR) + with self._clip_primitive(region): + with self._new_mask() as mask: + mask.ctx.set_line_width(0) + mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND) + mask.ctx.move_to(*self.scale_point(region.primitives[0].start)) + for prim in region.primitives: + if isinstance(prim, Line): + mask.ctx.line_to(*self.scale_point(prim.end)) + else: + center = self.scale_point(prim.center) + radius = self.scale[0] * prim.radius + angle1 = prim.start_angle + angle2 = prim.end_angle + if prim.direction == 'counterclockwise': + mask.ctx.arc(*center, radius=radius, + angle1=angle1, angle2=angle2) + else: + mask.ctx.arc_negative(*center, radius=radius, + angle1=angle1, angle2=angle2) + mask.ctx.fill() + self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) + + def _render_circle(self, circle, color): + center = self.scale_point(circle.position) + self.ctx.set_operator(cairo.OPERATOR_OVER + if (not self.invert) + and circle.level_polarity == 'dark' + else cairo.OPERATOR_CLEAR) + with self._clip_primitive(circle): + with self._new_mask() as mask: + mask.ctx.set_line_width(0) + mask.ctx.arc(center[0], + center[1], + radius=(circle.radius * self.scale[0]), + angle1=0, + angle2=(2 * math.pi)) + mask.ctx.fill() + + if hasattr(circle, 'hole_diameter') and circle.hole_diameter > 0: + mask.ctx.set_operator(cairo.OPERATOR_CLEAR) + mask.ctx.arc(center[0], + center[1], + radius=circle.hole_radius * self.scale[0], + angle1=0, + angle2=2 * math.pi) + mask.ctx.fill() + + if (hasattr(circle, 'hole_width') and hasattr(circle, 'hole_height') + and circle.hole_width > 0 and circle.hole_height > 0): + mask.ctx.set_operator(cairo.OPERATOR_CLEAR + if circle.level_polarity == 'dark' + and (not self.invert) + else cairo.OPERATOR_OVER) + width, height = self.scale_point((circle.hole_width, circle.hole_height)) + lower_left = rotate_point( + (center[0] - width / 2.0, center[1] - height / 2.0), + circle.rotation, center) + lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0), + circle.rotation, center) + upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0), + circle.rotation, center) + upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0), + circle.rotation, center) + points = (lower_left, lower_right, upper_right, upper_left) + mask.ctx.move_to(*points[-1]) + for point in points: + mask.ctx.line_to(*point) + mask.ctx.fill() + self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) + + def _render_rectangle(self, rectangle, color): + lower_left = self.scale_point(rectangle.lower_left) + width, height = tuple([abs(coord) for coord in + self.scale_point((rectangle.width, + rectangle.height))]) + self.ctx.set_operator(cairo.OPERATOR_OVER + if (not self.invert) + and rectangle.level_polarity == 'dark' + else cairo.OPERATOR_CLEAR) + with self._clip_primitive(rectangle): + with self._new_mask() as mask: + mask.ctx.set_line_width(0) + mask.ctx.rectangle(*lower_left, width=width, height=height) + mask.ctx.fill() + + center = self.scale_point(rectangle.position) + if rectangle.hole_diameter > 0: + # Render the center clear + mask.ctx.set_operator(cairo.OPERATOR_CLEAR + if rectangle.level_polarity == 'dark' + and (not self.invert) + else cairo.OPERATOR_OVER) + + mask.ctx.arc(center[0], center[1], + radius=rectangle.hole_radius * self.scale[0], angle1=0, + angle2=2 * math.pi) + mask.ctx.fill() + + if rectangle.hole_width > 0 and rectangle.hole_height > 0: + mask.ctx.set_operator(cairo.OPERATOR_CLEAR + if rectangle.level_polarity == 'dark' + and (not self.invert) + else cairo.OPERATOR_OVER) + width, height = self.scale_point((rectangle.hole_width, rectangle.hole_height)) + lower_left = rotate_point((center[0] - width/2.0, center[1] - height/2.0), rectangle.rotation, center) + lower_right = rotate_point((center[0] + width/2.0, center[1] - height/2.0), rectangle.rotation, center) + upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0), rectangle.rotation, center) + upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0), rectangle.rotation, center) + points = (lower_left, lower_right, upper_right, upper_left) + mask.ctx.move_to(*points[-1]) + for point in points: + mask.ctx.line_to(*point) + mask.ctx.fill() + self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) + + def _render_obround(self, obround, color): + self.ctx.set_operator(cairo.OPERATOR_OVER + if (not self.invert) + and obround.level_polarity == 'dark' + else cairo.OPERATOR_CLEAR) + with self._clip_primitive(obround): + with self._new_mask() as mask: + mask.ctx.set_line_width(0) + + # Render circles + for circle in (obround.subshapes['circle1'], obround.subshapes['circle2']): + center = self.scale_point(circle.position) + mask.ctx.arc(center[0], + center[1], + radius=(circle.radius * self.scale[0]), + angle1=0, + angle2=(2 * math.pi)) + mask.ctx.fill() + + # Render Rectangle + rectangle = obround.subshapes['rectangle'] + lower_left = self.scale_point(rectangle.lower_left) + width, height = tuple([abs(coord) for coord in + self.scale_point((rectangle.width, + rectangle.height))]) + mask.ctx.rectangle(*lower_left, width=width, height=height) + mask.ctx.fill() + + center = self.scale_point(obround.position) + if obround.hole_diameter > 0: + # Render the center clear + mask.ctx.set_operator(cairo.OPERATOR_CLEAR) + mask.ctx.arc(center[0], center[1], + radius=obround.hole_radius * self.scale[0], angle1=0, + angle2=2 * math.pi) + mask.ctx.fill() + + if obround.hole_width > 0 and obround.hole_height > 0: + mask.ctx.set_operator(cairo.OPERATOR_CLEAR + if rectangle.level_polarity == 'dark' + and (not self.invert) + else cairo.OPERATOR_OVER) + width, height =self.scale_point((obround.hole_width, obround.hole_height)) + lower_left = rotate_point((center[0] - width / 2.0, center[1] - height / 2.0), + obround.rotation, center) + lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0), + obround.rotation, center) + upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0), + obround.rotation, center) + upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0), + obround.rotation, center) + points = (lower_left, lower_right, upper_right, upper_left) + mask.ctx.move_to(*points[-1]) + for point in points: + mask.ctx.line_to(*point) + mask.ctx.fill() + + self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) + + def _render_polygon(self, polygon, color): + self.ctx.set_operator(cairo.OPERATOR_OVER + if (not self.invert) + and polygon.level_polarity == 'dark' + else cairo.OPERATOR_CLEAR) + with self._clip_primitive(polygon): + with self._new_mask() as mask: + + vertices = polygon.vertices + mask.ctx.set_line_width(0) + mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND) + # Start from before the end so it is easy to iterate and make sure + # it is closed + mask.ctx.move_to(*self.scale_point(vertices[-1])) + for v in vertices: + mask.ctx.line_to(*self.scale_point(v)) + mask.ctx.fill() + + center = self.scale_point(polygon.position) + if polygon.hole_radius > 0: + # Render the center clear + mask.ctx.set_operator(cairo.OPERATOR_CLEAR + if polygon.level_polarity == 'dark' + and (not self.invert) + else cairo.OPERATOR_OVER) + mask.ctx.set_line_width(0) + mask.ctx.arc(center[0], + center[1], + polygon.hole_radius * self.scale[0], 0, 2 * math.pi) + mask.ctx.fill() + + if polygon.hole_width > 0 and polygon.hole_height > 0: + mask.ctx.set_operator(cairo.OPERATOR_CLEAR + if polygon.level_polarity == 'dark' + and (not self.invert) + else cairo.OPERATOR_OVER) + width, height = self.scale_point((polygon.hole_width, polygon.hole_height)) + lower_left = rotate_point((center[0] - width / 2.0, center[1] - height / 2.0), + polygon.rotation, center) + lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0), + polygon.rotation, center) + upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0), + polygon.rotation, center) + upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0), + polygon.rotation, center) + points = (lower_left, lower_right, upper_right, upper_left) + mask.ctx.move_to(*points[-1]) + for point in points: + mask.ctx.line_to(*point) + mask.ctx.fill() + + self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) + + def _render_drill(self, circle, color=None): + color = color if color is not None else self.drill_color + self._render_circle(circle, color) + + def _render_slot(self, slot, color): + start = map(mul, slot.start, self.scale) + end = map(mul, slot.end, self.scale) + + width = slot.diameter + + self.ctx.set_operator(cairo.OPERATOR_OVER + if slot.level_polarity == 'dark' and + (not self.invert) else cairo.OPERATOR_CLEAR) + with self._clip_primitive(slot): + with self._new_mask() as mask: + mask.ctx.set_line_width(width * self.scale[0]) + mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND) + mask.ctx.move_to(*start) + mask.ctx.line_to(*end) + mask.ctx.stroke() + self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0]) + + def _render_amgroup(self, amgroup, color): + for primitive in amgroup.primitives: + self.render(primitive) + + def _render_test_record(self, primitive, color): + position = [pos + origin for pos, origin in + zip(primitive.position, self.origin_in_inch)] + self.ctx.select_font_face( + 'monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD) + self.ctx.set_font_size(13) + self._render_circle(Circle(position, 0.015), color) + self.ctx.set_operator(cairo.OPERATOR_OVER + if primitive.level_polarity == 'dark' and + (not self.invert) else cairo.OPERATOR_CLEAR) + self.ctx.move_to(*[self.scale[0] * (coord + 0.015) for coord in position]) + self.ctx.scale(1, -1) + self.ctx.show_text(primitive.net_name) + self.ctx.scale(1, -1) + + def _new_render_layer(self, color=None, mirror=False): + size_in_pixels = self.scale_point(self.size_in_inch) + matrix = copy.copy(self._xform_matrix) + layer = cairo.SVGSurface(None, size_in_pixels[0], size_in_pixels[1]) + ctx = cairo.Context(layer) + + if self.invert: + ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) + ctx.set_operator(cairo.OPERATOR_OVER) + ctx.paint() + if mirror: + matrix.xx = -1.0 + matrix.x0 = self.origin_in_pixels[0] + self.size_in_pixels[0] + self.ctx = ctx + self.ctx.set_matrix(matrix) + self.active_layer = layer + self.active_matrix = matrix + + + def _flatten(self, color=None, alpha=None): + color = color if color is not None else self.color + alpha = alpha if alpha is not None else self.alpha + self.output_ctx.set_source_rgba(*color, alpha=alpha) + self.output_ctx.mask_surface(self.active_layer) + self.ctx = None + self.active_layer = None + self.active_matrix = None + + def _paint_background(self, settings=None): + color = settings.color if settings is not None else self.background_color + alpha = settings.alpha if settings is not None else 1.0 + if not self.has_bg: + self.has_bg = True + self.output_ctx.set_source_rgba(*color, alpha=alpha) + self.output_ctx.paint() + + def _clip_primitive(self, primitive): + """ Clip rendering context to pixel-aligned bounding box + + Calculates pixel- and axis- aligned bounding box, and clips current + context to that region. Improves rendering speed significantly. This + returns a context manager, use as follows: + + with self._clip_primitive(some_primitive): + do_rendering_stuff() + do_more_rendering stuff(with, arguments) + + The context manager will reset the context's clipping region when it + goes out of scope. + + """ + class Clip: + def __init__(clp, primitive): + x_range, y_range = primitive.bounding_box + xmin, xmax = x_range + ymin, ymax = y_range + + # Round bounds to the nearest pixel outside of the primitive + clp.xmin = math.floor(self.scale[0] * xmin) + clp.xmax = math.ceil(self.scale[0] * xmax) + + # We need to offset Y to take care of the difference in y-pos + # caused by flipping the axis. + clp.ymin = math.floor( + (self.scale[1] * ymin) - math.ceil(self.origin_in_pixels[1])) + clp.ymax = math.floor( + (self.scale[1] * ymax) - math.floor(self.origin_in_pixels[1])) + + # Calculate width and height, rounded to the nearest pixel + clp.width = abs(clp.xmax - clp.xmin) + clp.height = abs(clp.ymax - clp.ymin) + + def __enter__(clp): + # Clip current context to primitive's bounding box + self.ctx.rectangle(clp.xmin, clp.ymin, clp.width, clp.height) + self.ctx.clip() + + def __exit__(clp, exc_type, exc_val, traceback): + # Reset context clip region + self.ctx.reset_clip() + + return Clip(primitive) + + def scale_point(self, point): + return tuple([coord * scale for coord, scale in zip(point, self.scale)]) -- cgit