diff options
Diffstat (limited to 'twisted_coil_gen_twolayer.py')
-rw-r--r-- | twisted_coil_gen_twolayer.py | 1047 |
1 files changed, 0 insertions, 1047 deletions
diff --git a/twisted_coil_gen_twolayer.py b/twisted_coil_gen_twolayer.py deleted file mode 100644 index 204e7aa..0000000 --- a/twisted_coil_gen_twolayer.py +++ /dev/null @@ -1,1047 +0,0 @@ -#!/usr/bin/env python3 - -import subprocess -import sys -import math -import multiprocessing -import os -from math import * -from pathlib import Path -from itertools import cycle -from contextlib import contextmanager - -from scipy.constants import mu_0 -import numpy as np -import click -import matplotlib as mpl - -from gerbonara.cad.kicad import pcb as kicad_pcb -from gerbonara.cad.kicad import footprints as kicad_fp -from gerbonara.cad.kicad import graphical_primitives as kicad_gr -from gerbonara.cad.kicad import primitives as kicad_pr -from gerbonara.utils import Tag -from gerbonara import graphic_primitives as gp -from gerbonara import graphic_objects as go - - -__version__ = '1.0.0' - - -def point_line_distance(p, l1, l2): - x0, y0 = p - x1, y1 = l1 - x2, y2 = l2 - # https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line - return abs((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / sqrt((x2-x1)**2 + (y2-y1)**2) - -def line_line_intersection(l1, l2): - p1, p2 = l1 - p3, p4 = l2 - x1, y1 = p1 - x2, y2 = p2 - x3, y3 = p3 - x4, y4 = p4 - - # https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection - px = ((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4)) - py = ((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4)) - return px, py - -def angle_between_vectors(va, vb): - angle = atan2(vb[1], vb[0]) - atan2(va[1], va[0]) - if angle < 0: - angle += 2*pi - return angle - - -def traces_to_gmsh(traces, mesh_out, bbox, model_name='gerbonara_board', log=True, copper_thickness=0.035, board_thickness=0.8, air_box_margin=5.0): - import gmsh - occ = gmsh.model.occ - eps = 1e-6 - - gmsh.initialize() - gmsh.model.add('gerbonara_board') - if log: - gmsh.logger.start() - - trace_tags = {} - trace_ends = set() - render_cache = {} - for i, tr in enumerate(traces, start=1): - layer = tr[1].layer - z0 = 0 if layer == 'F.Cu' else -(board_thickness+copper_thickness) - - prims = [prim - for elem in tr - for obj in elem.render(cache=render_cache) - for prim in obj.to_primitives()] - - tags = [] - for prim in prims: - if isinstance(prim, gp.Line): - length = dist((prim.x1, prim.y1), (prim.x2, prim.y2)) - box_tag = occ.addBox(0, -prim.width/2, 0, length, prim.width, copper_thickness) - angle = atan2(prim.y2 - prim.y1, prim.x2 - prim.x1) - occ.rotate([(3, box_tag)], 0, 0, 0, 0, 0, 1, angle) - occ.translate([(3, box_tag)], prim.x1, prim.y1, z0) - tags.append(box_tag) - - for x, y in ((prim.x1, prim.y1), (prim.x2, prim.y2)): - disc_id = (round(x, 3), round(y, 3), round(z0, 3), round(prim.width, 3)) - if disc_id in trace_ends: - continue - - trace_ends.add(disc_id) - cylinder_tag = occ.addCylinder(x, y, z0, 0, 0, copper_thickness, prim.width/2) - tags.append(cylinder_tag) - print('fusing', tags) - tags, tag_map = occ.fuse([(3, tags[0])], [(3, tag) for tag in tags[1:]]) - print(tags) - assert len(tags) == 1 - (_dim, tag), = tags - trace_tags[i] = tag - - (x1, y1), (x2, y2) = bbox - substrate = occ.addBox(x1, y1, -board_thickness, x2-x1, y2-y1, board_thickness) - - x1, y1 = x1-air_box_margin, y1-air_box_margin - x2, y2 = x2+air_box_margin, y2+air_box_margin - w, d = x2-x1, y2-y1 - z0 = -board_thickness-air_box_margin - ab_h = board_thickness + 2*air_box_margin - airbox = occ.addBox(x1, y1, z0, w, d, ab_h) - - print('Cutting airbox') - occ.cut([(3, airbox)], [(3, tag) for tag in trace_tags.values()], removeObject=True, removeTool=False) - print('Fragmenting') - fragment_tags, fragment_hierarchy = occ.fragment([(3, airbox)], [(3, substrate)] + [(3, tag) for tag in trace_tags.values()]) - - print('Synchronizing') - occ.synchronize() - substrate_physical = gmsh.model.add_physical_group(3, [substrate], name='substrate') - airbox_physical = gmsh.model.add_physical_group(3, [airbox], name='airbox') - trace_physical_surfaces = [ - gmsh.model.add_physical_group(2, list(gmsh.model.getAdjacencies(3, tag)[1]), name=f'trace{i}') - for i, tag in trace_tags.items()] - - airbox_adjacent = set(gmsh.model.getAdjacencies(3, airbox)[1]) - in_bbox = {tag for _dim, tag in gmsh.model.getEntitiesInBoundingBox(x1+eps, y1+eps, z0+eps, x1+w-eps, y1+d-eps, z0+ab_h-eps, dim=3)} - airbox_physical_surface = gmsh.model.add_physical_group(2, list(airbox_adjacent - in_bbox), name='airbox_surface') - - #points_airbox_adjacent = set(gmsh.model.getAdjacencies(0, airbox)[1]) - #points_inside = {tag for _dim, tag in gmsh.model.getEntitiesInBoundingBox(x1+eps, y1+eps, z0+eps, x1+w-eps, y1+d-eps, z0+ab_h-eps, dim=0)} - - #gmsh.model.mesh.setSize([(0, tag) for tag in points_airbox_adjacent - points_inside], 10e-3) - - gmsh.model.mesh.setSize(getPoints((3, airbox)), 10.0) - - trace_field = gmsh.model.mesh.field.add('BoundaryLayer') - gmsh.model.mesh.field.setNumbers(trace_field, 'CurvesList', getCurves(*trace_tags.values())) - gmsh.model.mesh.field.setNumber(trace_field, 'Size', 0.5) - gmsh.model.mesh.field.setNumber(trace_field, 'SizeFar', 5.0) - #gmsh.model.mesh.field.setAsBackgroundMesh(trace_field) - - substrate_field = gmsh.model.mesh.field.add('Box') - gmsh.model.mesh.field.setNumber(substrate_field, 'VIn', board_thickness) - gmsh.model.mesh.field.setNumber(substrate_field, 'VOut', 10.0) - gmsh.model.mesh.field.setNumber(substrate_field, 'XMin', x1) - gmsh.model.mesh.field.setNumber(substrate_field, 'YMin', y1) - gmsh.model.mesh.field.setNumber(substrate_field, 'ZMin', -board_thickness) - gmsh.model.mesh.field.setNumber(substrate_field, 'XMax', x2) - gmsh.model.mesh.field.setNumber(substrate_field, 'YMax', y2) - gmsh.model.mesh.field.setNumber(substrate_field, 'ZMax', 0) - gmsh.model.mesh.field.setNumber(substrate_field, 'Thickness', 2*board_thickness) - - background_field = gmsh.model.mesh.field.add('MinAniso') - gmsh.model.mesh.field.setNumbers(background_field, 'FieldsList', [trace_field, substrate_field]) - gmsh.model.mesh.field.setAsBackgroundMesh(background_field) - - gmsh.option.setNumber('Mesh.MeshSizeFromCurvature', 12) - gmsh.option.setNumber('Mesh.Smoothing', 10) - gmsh.option.setNumber('Mesh.Algorithm3D', 10) - gmsh.option.setNumber('Mesh.MeshSizeMax', 1) - gmsh.option.setNumber('General.NumThreads', multiprocessing.cpu_count()) - - print('Meshing') - gmsh.model.mesh.generate(dim=3) - print('Writing') - gmsh.write(str(mesh_out)) - -@contextmanager -def model_delta(): - import gmsh - gmsh.model.occ.synchronize() - entities = {i: set() for i in range(4)} - for dim, tag in gmsh.model.getEntities(): - entities[dim].add(tag) - - yield - - gmsh.model.occ.synchronize() - new_entities = {i: set() for i in range(4)} - for dim, tag in gmsh.model.getEntities(): - new_entities[dim].add(tag) - - for i, dimtype in enumerate(['points', 'lines', 'surfaces', 'volumes']): - delta = entities[i] - new_entities[i] - print(f'Removed {dimtype} [{len(delta)}]: {", ".join(map(str, delta))[:180]}') - - delta = new_entities[i] - entities[i] - print(f'New {dimtype} [{len(delta)}]: {", ".join(map(str, delta))[:180]}') - - -def _gmsh_coil_inductance_geometry(traces, mesh_out, bbox, copper_thickness, board_thickness, air_box_margin_h): - import gmsh - occ = gmsh.model.occ - trace_tags = [] - trace_ends = set() - render_cache = {} - first_disk, last_disk = None, None - for i, tr in enumerate(traces, start=1): - layer = tr[1].layer - z0 = 0 if layer == 'F.Cu' else -(board_thickness+copper_thickness) - - objs = [obj - for elem in tr - for obj in elem.render(cache=render_cache)] - - tags = [] - for ob in objs: - if isinstance(ob, go.Line): - length = dist((ob.x1, ob.y1), (ob.x2, ob.y2)) - w = ob.aperture.equivalent_width('mm') - box_tag = occ.addBox(0, -w/2, 0, length, w, copper_thickness) - angle = atan2(ob.y2 - ob.y1, ob.x2 - ob.x1) - occ.rotate([(3, box_tag)], 0, 0, 0, 0, 0, 1, angle) - occ.translate([(3, box_tag)], ob.x1, ob.y1, z0) - tags.append(box_tag) - - for x, y in ((ob.x1, ob.y1), (ob.x2, ob.y2)): - disc_id = (round(x, 3), round(y, 3), round(z0, 3), round(w, 3)) - if disc_id in trace_ends: - continue - - trace_ends.add(disc_id) - cylinder_tag = occ.addCylinder(x, y, z0, 0, 0, copper_thickness, w/2) - tags.append(cylinder_tag) - - if first_disk is None: - occ.synchronize() - adjacent = gmsh.model.getAdjacencies(3, cylinder_tag) - first_disk = adjacent - elif i == len(traces) and last_disk is None: - occ.synchronize() - adjacent = gmsh.model.getAdjacencies(3, cylinder_tag) - last_disk = adjacent - - for elem in tr: - if isinstance(elem, kicad_pcb.Via): - cylinder_tag = occ.addCylinder(elem.at.x, elem.at.y, 0, 0, 0, -board_thickness, elem.drill/2) - tags.append(cylinder_tag) - occ.synchronize() - - if len(tags) > 1: - print('fusing', tags) - tags, tag_map = occ.fuse([(3, tags[0])], [(3, tag) for tag in tags[1:]]) - print(tags) - - assert len(tags) == 1 - (_dim, tag), = tags - trace_tags.append(tag) - - print('fusing top-level', trace_tags) - tags, tag_map = occ.fuse([(3, trace_tags[0])], [(3, tag) for tag in trace_tags[1:]]) - print(tags) - assert len(tags) == 1 - (_dim, toplevel_tag), = tags - - (x1, y1), (x2, y2) = bbox - - first_geom = traces[0][0] - - with model_delta(): - print('Fragmenting disks') - interface_tag_top = occ.addDisk(first_geom.start.x, first_geom.start.y, 0, first_geom.width/2, first_geom.width/2) - interface_tag_bottom = occ.addDisk(first_geom.start.x, first_geom.start.y, -board_thickness, first_geom.width/2, first_geom.width/2) - occ.fragment([(3, toplevel_tag)], [(2, interface_tag_top), (2, interface_tag_bottom)], removeObject=True, removeTool=True) - - substrate = occ.addBox(x1, y1, -board_thickness, x2-x1, y2-y1, board_thickness) - - print('cut') - with model_delta(): - print(occ.cut([(3, substrate)], [(3, toplevel_tag)], removeObject=True, removeTool=False)) - - return toplevel_tag, interface_tag_top, interface_tag_bottom, substrate - - -def getCurves(*volume_tags): - import gmsh - dim_tags = gmsh.model.getBoundary([(3, tag) for tag in volume_tags], oriented=False) - return [curve_tag for dim, curve_tag in gmsh.model.getBoundary(dim_tags, oriented=False, combined=False) if dim == 1] - -def getPoints(*dim_tags): - import gmsh - return [(0, tag) for dim, tag in gmsh.model.getBoundary(dim_tags, oriented=False, recursive=True) if dim == 0] - - -def traces_to_gmsh_mag(traces, mesh_out, bbox, model_name='gerbonara_board', log=True, copper_thickness=0.035, board_thickness=0.8, air_box_margin_h=30.0, air_box_margin_v=80.0): - import gmsh - occ = gmsh.model.occ - eps = 1e-6 - - gmsh.initialize() - gmsh.model.add('gerbonara_board') - if log: - gmsh.logger.start() - - toplevel_tag, interface_tag_top, interface_tag_bottom, substrate = _gmsh_coil_inductance_geometry(traces, mesh_out, bbox, copper_thickness, board_thickness, air_box_margin_h) - - (x1, y1), (x2, y2) = bbox - x1, y1 = x1-air_box_margin_h, y1-air_box_margin_h - x2, y2 = x2+air_box_margin_h, y2+air_box_margin_h - w, d = x2-x1, y2-y1 - z0 = -2*copper_thickness-board_thickness-air_box_margin_v - ab_h = 2*copper_thickness + board_thickness + 2*air_box_margin_v - airbox = occ.addBox(x1, y1, z0, w, d, ab_h) - - print('cut') - with model_delta(): - print(occ.cut([(3, airbox)], [(3, toplevel_tag), (3, substrate)], removeObject=True, removeTool=False)) - - print(f'Fragmenting airbox ({airbox}) with {toplevel_tag=} {substrate=}') - with model_delta(): - print(occ.fragment([(3, airbox)], [(3, toplevel_tag), (3, substrate)], removeObject=True, removeTool=False)) - - print('Synchronizing') - occ.synchronize() - - first_geom = traces[0][0] - pcx, pcy = first_geom.start.x, first_geom.start.y - pcr = first_geom.width/2 - (_dim, plane_top), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, -eps, pcx+pcr+eps, pcy+pcr+eps, eps, 2) - (_dim, plane_bottom), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, -board_thickness-eps, pcx+pcr+eps, pcy+pcr+eps, -board_thickness+eps, 2) - - substrate_physical = gmsh.model.add_physical_group(3, [substrate], name='substrate') - airbox_physical = gmsh.model.add_physical_group(3, [airbox], name='airbox') - trace_physical = gmsh.model.add_physical_group(3, [toplevel_tag], name='trace') - - gmsh.model.mesh.setSize(getPoints((3, airbox)), 10.0) - #gmsh.model.mesh.setSize(getPoints((3, substrate)), 1.0) - #gmsh.model.mesh.setSize(getPoints((3, toplevel_tag)), 0.1) - - #trace_field = gmsh.model.mesh.field.add('AttractorAnisoCurve') - #gmsh.model.mesh.field.setNumbers(trace_field, 'CurvesList', getCurves(toplevel_tag)) - #gmsh.model.mesh.field.setNumber(trace_field, 'DistMax', 1.0) - #gmsh.model.mesh.field.setNumber(trace_field, 'DistMin', 0.3) - #gmsh.model.mesh.field.setNumber(trace_field, 'SizeMinNormal', 0.1) - #gmsh.model.mesh.field.setNumber(trace_field, 'SizeMaxNormal', 1.0) - #gmsh.model.mesh.field.setNumber(trace_field, 'SizeMinTangent', 0.5) - #gmsh.model.mesh.field.setNumber(trace_field, 'SizeMaxTangent', 2.0) - #gmsh.model.mesh.field.setAsBackgroundMesh(trace_field) - - trace_field = gmsh.model.mesh.field.add('BoundaryLayer') - gmsh.model.mesh.field.setNumbers(trace_field, 'CurvesList', getCurves(toplevel_tag)) - gmsh.model.mesh.field.setNumber(trace_field, 'Size', 0.5) - gmsh.model.mesh.field.setNumber(trace_field, 'SizeFar', 5.0) - #gmsh.model.mesh.field.setAsBackgroundMesh(trace_field) - - substrate_field = gmsh.model.mesh.field.add('Box') - gmsh.model.mesh.field.setNumber(substrate_field, 'VIn', board_thickness) - gmsh.model.mesh.field.setNumber(substrate_field, 'VOut', 10.0) - gmsh.model.mesh.field.setNumber(substrate_field, 'XMin', x1) - gmsh.model.mesh.field.setNumber(substrate_field, 'YMin', y1) - gmsh.model.mesh.field.setNumber(substrate_field, 'ZMin', -board_thickness) - gmsh.model.mesh.field.setNumber(substrate_field, 'XMax', x2) - gmsh.model.mesh.field.setNumber(substrate_field, 'YMax', y2) - gmsh.model.mesh.field.setNumber(substrate_field, 'ZMax', 0) - gmsh.model.mesh.field.setNumber(substrate_field, 'Thickness', 2*board_thickness) - - background_field = gmsh.model.mesh.field.add('MinAniso') - gmsh.model.mesh.field.setNumbers(background_field, 'FieldsList', [trace_field, substrate_field]) - gmsh.model.mesh.field.setAsBackgroundMesh(background_field) - - interface_top_physical = gmsh.model.add_physical_group(2, [plane_top], name='interface_top') - interface_bottom_physical = gmsh.model.add_physical_group(2, [plane_bottom], name='interface_bottom') - - airbox_adjacent = set(gmsh.model.getAdjacencies(3, airbox)[1]) - in_bbox = {tag for _dim, tag in gmsh.model.getEntitiesInBoundingBox(x1+eps, y1+eps, z0+eps, x2-eps, y2-eps, z0+ab_h-eps, dim=2)} - airbox_physical_surface = gmsh.model.add_physical_group(2, list(airbox_adjacent - in_bbox), name='airbox_surface') - - points_airbox_adjacent = {tag for _dim, tag in gmsh.model.getBoundary([(3, airbox)], recursive=True, oriented=False)} - points_inside = {tag for _dim, tag in gmsh.model.getEntitiesInBoundingBox(x1+eps, y1+eps, z0+eps, x1+w-eps, y1+d-eps, z0+ab_h-eps, dim=0)} - #gmsh.model.mesh.setSize([(0, tag) for tag in points_airbox_adjacent - points_inside], 300e-3) - - gmsh.option.setNumber('Mesh.MeshSizeFromCurvature', 12) - gmsh.option.setNumber('Mesh.Smoothing', 10) - gmsh.option.setNumber('Mesh.Algorithm3D', 10) # HXT - gmsh.option.setNumber('Mesh.MeshSizeMax', 10) - gmsh.option.setNumber('Mesh.MeshSizeMin', 0.08) - gmsh.option.setNumber('General.NumThreads', multiprocessing.cpu_count()) - - print('Writing geo file') - gmsh.write('/tmp/test.geo_unrolled') - print('Meshing') - gmsh.model.mesh.generate(dim=3) - print('Writing to', str(mesh_out)) - gmsh.write(str(mesh_out)) - - -def traces_to_gmsh_mag_mutual(traces, mesh_out, bbox, model_name='gerbonara_board', log=True, copper_thickness=0.035, board_thickness=0.8, air_box_margin_h=30.0, air_box_margin_v=80.0, mutual_offset=(0, 0, 5), mutual_rotation=(0, 0, 0)): - import gmsh - occ = gmsh.model.occ - eps = 1e-6 - - gmsh.initialize() - gmsh.model.add('gerbonara_board') - if log: - gmsh.logger.start() - - m_dx, m_dy, m_dz = mutual_offset - m_ax, m_ay, m_az = mutual_rotation - m_dz += 2*copper_thickness + board_thickness - - toplevel_tag1, interface_tag_top1, interface_tag_bottom1, substrate1 = _gmsh_coil_inductance_geometry(traces, mesh_out, bbox, copper_thickness, board_thickness, air_box_margin_h) - - upper_coil = [(3, toplevel_tag1), (3, substrate1)] - occ.translate(upper_coil, m_dx, m_dy, m_dz) - - print('rotate') - with model_delta(): - occ.rotate(upper_coil, 0, 0, 0, 0, 0, 1, m_az) - - toplevel_tag2, interface_tag_top2, interface_tag_bottom2, substrate2 = _gmsh_coil_inductance_geometry(traces, mesh_out, bbox, copper_thickness, board_thickness, air_box_margin_h) - - (x1, y1), (x2, y2) = bbox - x1, y1 = x1-air_box_margin_h, y1-air_box_margin_h - x2, y2 = x2+air_box_margin_h, y2+air_box_margin_h - w, d = x2-x1, y2-y1 - z0 = -2*copper_thickness-board_thickness-air_box_margin_v - ab_h = 4*copper_thickness + 2*board_thickness + 2*air_box_margin_v + m_dz - airbox = occ.addBox(x1, y1, z0, w, d, ab_h) - - print('cut') - with model_delta(): - print(occ.cut([(3, airbox)], [(3, toplevel_tag1), (3, toplevel_tag2), (3, substrate1), (3, substrate2)], removeObject=True, removeTool=False)) - - print(f'Fragmenting airbox ({airbox}) with {toplevel_tag1=} {substrate1=} {toplevel_tag2=} {substrate2=}') - with model_delta(): - print(occ.fragment([(3, airbox)], [(3, toplevel_tag1), (3, toplevel_tag2), (3, substrate1), (3, substrate2)], removeObject=True, removeTool=False)) - - print('Synchronizing') - occ.synchronize() - - first_geom = traces[0][0] - pcx, pcy = first_geom.start.x + m_dx, first_geom.start.y + m_dy - pcx, pcy = math.cos(m_az) * pcx - math.sin(m_az) * pcy, math.sin(m_az) * pcx + math.cos(m_az) * pcy - pcr = first_geom.width/2 - - (_dim, plane_top1), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, m_dz-eps, pcx+pcr+eps, pcy+pcr+eps, m_dz+eps, 2) - (_dim, plane_bottom1), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, m_dz-board_thickness-eps, pcx+pcr+eps, pcy+pcr+eps, m_dz-board_thickness+eps, 2) - - pcx, pcy = first_geom.start.x, first_geom.start.y - (_dim, plane_top2), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, -eps, pcx+pcr+eps, pcy+pcr+eps, eps, 2) - (_dim, plane_bottom2), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, -board_thickness-eps, pcx+pcr+eps, pcy+pcr+eps, -board_thickness+eps, 2) - - substrate1_physical = gmsh.model.add_physical_group(3, [substrate1], name='substrate1') - trace1_physical = gmsh.model.add_physical_group(3, [toplevel_tag1], name='trace1') - substrate2_physical = gmsh.model.add_physical_group(3, [substrate2], name='substrate2') - trace2_physical = gmsh.model.add_physical_group(3, [toplevel_tag2], name='trace2') - airbox_physical = gmsh.model.add_physical_group(3, [airbox], name='airbox') - - interface_top1_physical = gmsh.model.add_physical_group(2, [plane_top1], name='interface_top1') - interface_bottom1_physical = gmsh.model.add_physical_group(2, [plane_bottom1], name='interface_bottom1') - interface_top2_physical = gmsh.model.add_physical_group(2, [plane_top2], name='interface_top2') - interface_bottom2_physical = gmsh.model.add_physical_group(2, [plane_bottom2], name='interface_bottom2') - - airbox_adjacent = set(gmsh.model.getAdjacencies(3, airbox)[1]) - in_bbox = {tag for _dim, tag in gmsh.model.getEntitiesInBoundingBox(x1+eps, y1+eps, z0+eps, x2-eps, y2-eps, z0+ab_h-eps, dim=2)} - airbox_physical_surface = gmsh.model.add_physical_group(2, list(airbox_adjacent - in_bbox), name='airbox_surface') - - gmsh.model.mesh.setSize(getPoints((3, airbox)), 10.0) - - trace_field = gmsh.model.mesh.field.add('BoundaryLayer') - gmsh.model.mesh.field.setNumbers(trace_field, 'CurvesList', getCurves(toplevel_tag1, toplevel_tag2)) - gmsh.model.mesh.field.setNumber(trace_field, 'Size', 0.5) - gmsh.model.mesh.field.setNumber(trace_field, 'SizeFar', 10.0) - - substrate_field = gmsh.model.mesh.field.add('AttractorAnisoCurve') - gmsh.model.mesh.field.setNumbers(substrate_field, 'CurvesList', getCurves(substrate1, substrate2)) - gmsh.model.mesh.field.setNumber(substrate_field, 'DistMax', 10) - gmsh.model.mesh.field.setNumber(substrate_field, 'DistMin', 0) - gmsh.model.mesh.field.setNumber(substrate_field, 'SizeMinNormal', board_thickness/3) - gmsh.model.mesh.field.setNumber(substrate_field, 'SizeMaxNormal', 10.0) - gmsh.model.mesh.field.setNumber(substrate_field, 'SizeMinTangent', 0.5) - gmsh.model.mesh.field.setNumber(substrate_field, 'SizeMaxTangent', 10.0) - - background_field = gmsh.model.mesh.field.add('MinAniso') - gmsh.model.mesh.field.setNumbers(background_field, 'FieldsList', [trace_field, substrate_field]) - gmsh.model.mesh.field.setAsBackgroundMesh(background_field) - - gmsh.option.setNumber('Mesh.MeshSizeFromCurvature', 12) - gmsh.option.setNumber('Mesh.Smoothing', 10) - gmsh.option.setNumber('Mesh.Algorithm3D', 10) - gmsh.option.setNumber('Mesh.MeshSizeMax', 10) - gmsh.option.setNumber('Mesh.MeshSizeMin', 0.08) - gmsh.option.setNumber('General.NumThreads', multiprocessing.cpu_count()) - - print('Meshing') - gmsh.model.mesh.generate(dim=3) - print('Writing to', str(mesh_out)) - gmsh.write(str(mesh_out)) - - -def traces_to_magneticalc(traces, out, pcb_thickness=0.8): - coords = [] - last_x, last_y, last_z = None, None, None - def coord(x, y, z): - nonlocal coords, last_x, last_y, last_z - if (x, y, z) != (last_x, last_y, last_z): - coords.append((x, y, z)) - - render_cache = {} - for tr in traces: - z = pcb_thickness if tr[1].layer == 'F.Cu' else 0 - objs = [obj - for elem in tr - for obj in elem.render(cache=render_cache) - if isinstance(elem, (kicad_pcb.TrackSegment, kicad_pcb.TrackArc))] - - # start / switch layer - coord(objs[0].x1, objs[0].y1, z) - - for ob in objs: - coord(ob.x2, ob.y2, z) - - np.savetxt(out, np.array(coords) / 10) # magneticalc expects centimeters, not millimeters. - - -class SVGPath: - def __init__(self, **attrs): - self.d = '' - self.attrs = attrs - - def line(self, x, y): - self.d += f'L {x} {y} ' - - def move(self, x, y): - self.d += f'M {x} {y} ' - - def arc(self, x, y, r, large, sweep): - self.d += f'A {r} {r} 0 {int(large)} {int(sweep)} {x} {y} ' - - def close(self): - self.d += 'Z ' - - def __str__(self): - attrs = ' '.join(f'{key.replace("_", "-")}="{value}"' for key, value in self.attrs.items()) - return f'<path {attrs} d="{self.d.rstrip()}"/>' - -class SVGCircle: - def __init__(self, r, cx, cy, **attrs): - self.r = r - self.cx, self.cy = cx, cy - self.attrs = attrs - - def __str__(self): - attrs = ' '.join(f'{key.replace("_", "-")}="{value}"' for key, value in self.attrs.items()) - return f'<circle {attrs} r="{self.r}" cx="{self.cx}" cy="{self.cy}"/>' - -def svg_file(fn, stuff, vbw, vbh, vbx=0, vby=0): - with open(fn, 'w') as f: - f.write('<?xml version="1.0" standalone="no"?>\n') - f.write('<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">\n') - f.write(f'<svg version="1.1" width="{vbw*4}mm" height="{vbh*4}mm" viewBox="{vbx} {vby} {vbw} {vbh}" style="background-color: #333" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">>\n') - - for foo in stuff: - f.write(str(foo)) - - f.write('</svg>\n') - - -# https://en.wikipedia.org/wiki/Farey_sequence#Next_term -def farey_sequence(n: int, descending: bool = False) -> None: - """Print the n'th Farey sequence. Allow for either ascending or descending.""" - a, b, c, d = 0, 1, 1, n - if descending: - a, c = 1, n - 1 - #print(f"{a}/{b}") - yield a, b - - while c <= n and not descending or a > 0 and descending: - k = (n + b) // d - a, b, c, d = c, d, k * c - a, k * d - b - #print(f"{a}/{b}") - yield a, b - - -def divisors(n, max_b=10): - for a, b in farey_sequence(n): - if a == n and b < max_b: - yield b - if b == n and a < max_b: - yield a - - -def print_valid_twists(ctx, param, value): - if not value or ctx.resilient_parsing: - return - - print(f'Valid twist counts for {value} turns:', file=sys.stderr) - for d in divisors(value, value): - print(f' {d}', file=sys.stderr) - - click.echo() - ctx.exit() - - -@click.command() -@click.argument('outfile', required=False, type=click.Path(writable=True, dir_okay=False, path_type=Path)) -@click.option('--footprint-name', help="Name for the generated footprint. Default: Output file name sans extension.") -@click.option('--layer-pair', default='F.Cu,B.Cu', help="Target KiCad layer pair for the generated footprint, comma-separated. Default: F.Cu/B.Cu.") -@click.option('--turns', type=int, default=5, help='Number of turns') -@click.option('--pcb/--footprint', default=False, help='Generate a KiCad PCB instead of a footprint') -@click.option('--outer-diameter', type=float, default=50, help='Outer diameter [mm]') -@click.option('--inner-diameter', type=float, default=25, help='Inner diameter [mm]') -@click.option('--trace-width', type=float, default=None) -@click.option('--via-diameter', type=float, default=0.6) -@click.option('--two-layer/--single-layer', default=True) -@click.option('--via-drill', type=float, default=0.3) -@click.option('--via-offset', type=float, default=None, help='Radially offset vias from trace endpoints [mm]') -@click.option('--keepout-zone/--no-keepout-zone', default=True, help='Add a keepout are to the footprint (default: yes)') -@click.option('--keepout-margin', type=float, default=5, help='Margin between outside of coil and keepout area (mm, default: 5)') -@click.option('--copper-thickness', type=float, default=0.035, help='Copper thickness for resistance calculation and mesh generation in mm. Default: 0.035mm ^= 1 Oz') -@click.option('--board-thickness', type=float, default=1.53, help='Board substrate thickness for mesh generation in mm. Default: 1.53mm') -@click.option('--twists', type=int, default=1, help='Number of twists per revolution. Note that this number must be co-prime to the number of turns. Run with --show-twists to list valid values. (default: 1)') -@click.option('--circle-segments', type=int, default=64, help='When not using arcs, the number of points to use for arc interpolation per 360 degrees.') -@click.option('--show-twists', callback=print_valid_twists, expose_value=False, type=int, is_eager=True, help='Calculate and show valid --twists counts for the given number of turns. Takes the number of turns as a value.') -@click.option('--clearance', type=float, default=None) -@click.option('--arc-tolerance', type=float, default=0.02) -@click.option('--mesh-split-out', type=click.Path(writable=True, dir_okay=False, path_type=Path)) -@click.option('--mesh-out', type=click.Path(writable=True, dir_okay=False, path_type=Path)) -@click.option('--mesh-mutual-out', type=click.Path(writable=True, dir_okay=False, path_type=Path)) -@click.option('--mutual-offset-x', type=float, default=0) -@click.option('--mutual-offset-y', type=float, default=0) -@click.option('--mutual-offset-z', type=float, default=5) -@click.option('--mutual-rotation-z', type=float, default=0) -@click.option('--magneticalc-out', type=click.Path(writable=True, dir_okay=False, path_type=Path)) -@click.option('--clipboard/--no-clipboard', help='Use clipboard integration (requires wl-clipboard)') -@click.option('--counter-clockwise/--clockwise', help='Direction of generated spiral. Default: clockwise when wound from the inside.') -@click.version_option() -def generate(outfile, turns, outer_diameter, inner_diameter, via_diameter, via_drill, via_offset, trace_width, clearance, - footprint_name, layer_pair, twists, clipboard, counter_clockwise, keepout_zone, keepout_margin, - arc_tolerance, pcb, mesh_out, magneticalc_out, circle_segments, mesh_split_out, copper_thickness, - board_thickness, mesh_mutual_out, mutual_offset_x, mutual_offset_y, mutual_offset_z, mutual_rotation_z, - two_layer): - - if 'WAYLAND_DISPLAY' in os.environ: - copy, paste, cliputil = ['wl-copy'], ['wl-paste'], 'xclip' - else: - copy, paste, cliputil = ['xclip', '-i', '-sel', 'clipboard'], ['xclip', '-o', '-sel' 'clipboard'], 'wl-clipboard' - - if gcd(twists, turns) != 1: - raise click.ClickException('For the geometry to work out, the --twists parameter must be co-prime to --turns, i.e. the two must have 1 as their greatest common divisor. You can print valid values for --twists by running this command with --show-twists [turns number].') - - if (mesh_out or mesh_split_out or mesh_mutual_out) and not pcb: - raise click.ClickException('--pcb is required when --mesh-out, --mesh-mutual-out or --mesh-split-out are used.') - - if magneticalc_out and not pcb: - raise click.ClickException('--pcb is required when --magneticalc-out is used.') - - outer_radius = outer_diameter/2 - inner_radius = inner_diameter/2 - turns_per_layer = turns/2 if two_layer else turns - - sweeping_angle = 2*pi * turns_per_layer / twists - spiral_pitch = (outer_radius-inner_radius) / turns_per_layer - c1 = inner_radius - c2 = inner_radius + spiral_pitch - alpha1 = atan((outer_radius - inner_radius) / sweeping_angle / c1) - alpha2 = atan((outer_radius - inner_radius) / sweeping_angle / c2) - alpha = (alpha1+alpha2)/2 - projected_spiral_pitch = spiral_pitch*cos(alpha) - - if trace_width is None and clearance is None: - trace_width = 0.15 - print(f'Warning: Defaulting to {trace_width:.2f} mm trace width.', file=sys.stderr) - - if trace_width is None: - if round(clearance, 3) > round(projected_spiral_pitch, 3): - raise click.ClickException(f'Error: Given clearance of {clearance:.2f} mm is larger than the projected spiral pitch of {projected_spiral_pitch:.2f} mm. Reduce clearance or increase the size of the coil.') - trace_width = projected_spiral_pitch - clearance - print(f'Calculated trace width for {clearance:.2f} mm clearance is {trace_width:.2f} mm.', file=sys.stderr) - - elif clearance is None: - if round(trace_width, 2) > round(projected_spiral_pitch, 2): - raise click.ClickException(f'Error: Given trace width of {trace_width:.2f} mm is larger than the projected spiral pitch of {projected_spiral_pitch:.2f} mm. Reduce clearance or increase the size of the coil.') - clearance = projected_spiral_pitch - trace_width - print(f'Calculated clearance for {trace_width:.2f} mm trace width is {clearance:.2f} mm.', file=sys.stderr) - - else: - if round(trace_width, 2) > round(projected_spiral_pitch, 2): - raise click.ClickException(f'Error: Given trace width of {trace_width:.2f} mm is larger than the projected spiral pitch of {projected_spiral_pitch:.2f} mm. Reduce clearance or increase the size of the coil.') - clearance_actual = projected_spiral_pitch - trace_width - if round(clearance_actual, 3) < round(clearance, 3): - raise click.ClickException(f'Error: Actual clearance for {trace_width:.2f} mm trace is {clearance_actual:.2f} mm, which is lower than the given clearance of {clearance:.2f} mm.') - - if round(via_diameter, 2) < round(trace_width, 2): - print(f'Clipping via diameter from {via_diameter:.2f} mm to trace width of {trace_width:.2f} mm.', file=sys.stderr) - via_diameter = trace_width - - if via_offset is None: - via_offset = max(0, (via_diameter-trace_width)/2) - print(f'Autocalculated via offset {via_offset:.2f} mm', file=sys.stderr) - - inner_via_ring_radius = inner_radius - via_offset - #print(f'{inner_radius=} {via_offset=} {via_diameter=}', file=sys.stderr) - inner_via_angle = 2*asin((via_diameter + clearance)/2 / inner_via_ring_radius) - - outer_via_ring_radius = outer_radius + via_offset - outer_via_angle = 2*asin((via_diameter + clearance)/2 / outer_via_ring_radius) - - print(f'Inner via ring @r={inner_via_ring_radius:.2f} mm (from {inner_radius:.2f} mm)', file=sys.stderr) - print(f' {degrees(inner_via_angle):.1f} deg / via', file=sys.stderr) - print(f'Outer via ring @r={outer_via_ring_radius:.2f} mm (from {outer_radius:.2f} mm)', file=sys.stderr) - print(f' {degrees(outer_via_angle):.1f} deg / via', file=sys.stderr) - - # Check if the vias of the inner ring are so large that they would overlap - if inner_via_angle*twists > 2*pi: - min_dia = 2*((via_diameter + clearance) / (2*sin(pi / twists)) + via_offset) - raise click.ClickException(f'Error: Overlapping vias in inner via ring. Calculated minimum inner diameter is {min_dia:.2f} mm.') - - pitch = clearance + trace_width - t, _, b = layer_pair.partition(',') - layer_pair = (t.strip(), b.strip()) - rainbow = '#817 #a35 #c66 #e94 #ed0 #9d5 #4d8 #2cb #0bc #09c #36b #639'.split() - rainbow = rainbow[2::3] + rainbow[1::3] + rainbow[0::3] - n = 5 - rainbow = rainbow[n:] + rainbow[:n] - out_paths = [] - svg_stuff = [*out_paths] - - # For fill factor & inductance formulas, See https://coil32.net/pcb-coil.html for details - d_avg = (outer_diameter + inner_diameter)/2 - phi = (outer_diameter - inner_diameter) / (outer_diameter + inner_diameter) - c1, c2, c3, c4 = 1.00, 2.46, 0.00, 0.20 - L = mu_0 * turns**2 * d_avg*1e3 * c1 / 2 * (log(c2/phi) + c3*phi + c4*phi**2) - print(f'Outer diameter: {outer_diameter:g} mm', file=sys.stderr) - print(f'Average diameter: {d_avg:g} mm', file=sys.stderr) - print(f'Inner diameter: {inner_diameter:g} mm', file=sys.stderr) - print(f'Fill factor: {phi:g}', file=sys.stderr) - print(f'Approximate inductance: {L:g} µH', file=sys.stderr) - - make_pad = lambda num, layer, x, y: kicad_fp.Pad( - number=str(num), - type=kicad_fp.Atom.smd, - shape=kicad_fp.Atom.circle, - at=kicad_fp.AtPos(x=x, y=y), - size=kicad_fp.XYCoord(x=trace_width, y=trace_width), - layers=layer, - clearance=clearance, - zone_connect=0) - - make_line = lambda x1, y1, x2, y2, layer: kicad_fp.Line( - start=kicad_fp.XYCoord(x=x1, y=y1), - end=kicad_fp.XYCoord(x=x2, y=y2), - layer=layer, - stroke=kicad_fp.Stroke(width=trace_width)) - - make_arc = lambda x1, y1, x2, y2, xm, ym, layer: kicad_fp.Arc( - start=kicad_fp.XYCoord(x=x1, y=y1), - mid=kicad_fp.XYCoord(x=xm, y=ym), - end=kicad_fp.XYCoord(x=x2, y=y2), - layer=layer, - stroke=kicad_fp.Stroke(width=trace_width)) - - - make_via = lambda x, y, layers: kicad_fp.Pad(number="NC", - type=kicad_fp.Atom.thru_hole, - shape=kicad_fp.Atom.circle, - at=kicad_fp.AtPos(x=x, y=y), - size=kicad_fp.XYCoord(x=via_diameter, y=via_diameter), - drill=kicad_fp.Drill(diameter=via_drill), - layers=layers, - clearance=clearance, - zone_connect=0) - - pads = [] - lines = [] - arcs = [] - - def arc_approximate(points, layer, tolerance=0.02, level=0): - indent = ' ' * level - #print(f'{indent}arc_approximate {len(points)=}', file=sys.stderr) - if len(points) < 3: - raise ValueError() - - i_mid = len(points)//2 - - x0, y0 = points[0] - x1, y1 = points[i_mid] - x2, y2 = points[-1] - - if len(points) < 5: - #print(f'{indent} -> interp last points', file=sys.stderr) - yield make_arc(x0, y0, x2, y2, x1, y1, layer) - - # https://stackoverflow.com/questions/56224824/how-do-i-find-the-circumcenter-of-the-triangle-using-python-without-external-lib - d = 2 * (x0 * (y2 - y1) + x2 * (y1 - y0) + x1 * (y0 - y2)) - cx = ((x0 * x0 + y0 * y0) * (y2 - y1) + (x2 * x2 + y2 * y2) * (y1 - y0) + (x1 * x1 + y1 * y1) * (y0 - y2)) / d - cy = ((x0 * x0 + y0 * y0) * (x1 - x2) + (x2 * x2 + y2 * y2) * (x0 - x1) + (x1 * x1 + y1 * y1) * (x2 - x0)) / d - r = dist((cx, cy), (x1, y1)) - if any(abs(dist((px, py), (cx, cy)) - r) > tolerance for px, py in points): - #print(f'{indent} -> split', file=sys.stderr) - yield from arc_approximate(points[:i_mid+1], layer, tolerance, level+1) - yield from arc_approximate(points[i_mid:], layer, tolerance, level+1) - - else: - yield make_arc(x0, y0, x2, y2, x1, y1, layer) - #print(f'{indent} -> good fit', file=sys.stderr) - - def do_spiral(layer, r1, r2, a1, a2, start_frac, end_frac, fn=64): - use_arcs = not pcb - - fn = ceil(fn * (a2-a1)/(2*pi)) - x0, y0 = cos(a1)*r1, sin(a1)*r1 - direction = '↓' if r2 < r1 else '↑' - dr = 3 if r2 < r1 else -3 - label = f'{direction} {degrees(a1):.0f}' - svg_stuff.append(Tag('text', - [label], - x=str(x0 + cos(a1)*dr), - y=str(y0 + sin(a1)*dr), - text_anchor='middle', - style=f'font: 1px bold sans-serif; fill: {rainbow[layer%len(rainbow)]}')) - - xn, yn = x0, y0 - points = [(x0, y0)] - dists = [] - for i in range(fn): - r, g, b, _a = mpl.cm.plasma(start_frac + (end_frac - start_frac)/fn * (i + 0.5)) - path = SVGPath(fill='none', stroke=f'#{round(r*255):02x}{round(g*255):02x}{round(b*255):02x}', stroke_width=trace_width, stroke_linejoin='round', stroke_linecap='round') - svg_stuff.append(path) - xp, yp = xn, yn - r = r1 + (i+1)*(r2-r1)/fn - a = a1 + (i+1)*(a2-a1)/fn - xn, yn = cos(a)*r, sin(a)*r - path.move(xp, yp) - path.line(xn, yn) - points.append((xn, yn)) - dists.append(dist((xp, yp), (xn, yn))) - if not use_arcs: - lines.append(make_line(xp, yp, xn, yn, layer_pair[layer])) - - if use_arcs: - arcs.extend(arc_approximate(points, layer_pair[layer], arc_tolerance)) - - svg_stuff.append(Tag('text', - [label], - x=str(xn + cos(a2)*-dr), - y=str(yn + sin(a2)*-dr + 1.2), - text_anchor='middle', - style=f'font: 1px bold sans-serif; fill: {rainbow[layer%len(rainbow)]}')) - - return (x0, y0), (xn, yn), sum(dists) - - sector_angle = 2*pi / twists - total_angle = twists*2*sweeping_angle if two_layer else twists*sweeping_angle - - inverse = {} - for i in range(twists): - inverse[i*turns%twists] = i - - svg_vias = [] - for i in range(twists): - start_angle = i*sector_angle - fold_angle = start_angle + sweeping_angle - end_angle = fold_angle + sweeping_angle - - x = inverse[i]*floor(2*sweeping_angle / (2*pi)) * 2*pi - (x0, y0), (xn, yn), clen = do_spiral(0, outer_radius, inner_radius, start_angle, fold_angle, (x + start_angle)/total_angle, (x + fold_angle)/total_angle, circle_segments) - if two_layer: - do_spiral(1, inner_radius, outer_radius, fold_angle, end_angle, (x + fold_angle)/total_angle, (x + end_angle)/total_angle) - else: - dr = outer_radius - inner_radius - xq = xn + cos(fold_angle) * dr - yq = yn - sin(fold_angle) * dr - lines.append(make_line(xn, yn, xq, yq, layer_pair[1])) - - r, g, b, _a = mpl.cm.plasma((x + fold_angle)/total_angle) - path = SVGPath(fill='none', stroke=f'#{round(r*255):02x}{round(g*255):02x}{round(b*255):02x}', stroke_width=trace_width, stroke_linejoin='round', stroke_linecap='round') - svg_stuff.append(path) - path.move(xn, yn) - path.line(xq, yq) - - xv, yv = inner_via_ring_radius*cos(fold_angle), inner_via_ring_radius*sin(fold_angle) - pads.append(make_via(xv, yv, layer_pair)) - if not isclose(via_offset, 0, abs_tol=1e-6): - lines.append(make_line(xn, yn, xv, yv, layer_pair[0])) - lines.append(make_line(xn, yn, xv, yv, layer_pair[1])) - svg_vias.append(Tag('circle', cx=xv, cy=yv, r=via_diameter/2, stroke='none', fill='white')) - svg_vias.append(Tag('circle', cx=xv, cy=yv, r=via_drill/2, stroke='none', fill='black')) - - if i > 0: - xv, yv = outer_via_ring_radius*cos(start_angle), outer_via_ring_radius*sin(start_angle) - pads.append(make_via(xv, yv, layer_pair)) - if not isclose(via_offset, 0, abs_tol=1e-6): - lines.append(make_line(x0, y0, xv, yv, layer_pair[0])) - lines.append(make_line(x0, y0, xv, yv, layer_pair[1])) - svg_vias.append(Tag('circle', cx=xv, cy=yv, r=via_diameter/2, stroke='none', fill='white')) - svg_vias.append(Tag('circle', cx=xv, cy=yv, r=via_drill/2, stroke='none', fill='black')) - - l_total = clen*twists*2 - print(f'Approximate track length: {l_total:.2f} mm', file=sys.stderr) - A = copper_thickness/1e3 * trace_width/1e3 - rho = 1.68e-8 - R = l_total/1e3 * rho / A - print(f'Approximate resistance: {R:g} Ω', file=sys.stderr) - - top_pad = make_pad(1, [layer_pair[0]], outer_radius, 0) - pads.append(top_pad) - bottom_pad = make_pad(2, [layer_pair[1]], outer_radius, 0) - pads.append(bottom_pad) - - svg_stuff += svg_vias - - svg_stuff.append(Tag('path', d=f'M {inner_radius} 0 L {outer_radius} 0', stroke=rainbow[n+1], fill='none', - stroke_width='0.05mm', stroke_linecap='round')) - ntraces = int(turns_per_layer)+1 - alpha = [0] * ntraces - for i in range(ntraces): - c = inner_radius + (outer_radius-inner_radius) / turns_per_layer * i - #dalpha = dy / c - #dx / dalpha = (outer_radius - inner_radius) / sweeping_angle - #c * (dx / dy) = (outer_radius - inner_radius) / sweeping_angle - #dx / dy = (outer_radius - inner_radius) / sweeping_angle / c - dx = (outer_radius - inner_radius) / sweeping_angle / c - alpha[i] = atan(dx) - dy = 0.3 - dx *= dy - r = trace_width/2 / cos(alpha[i]) - svg_stuff.append(Tag('path', d=f'M {c-r+dx} {-dy} L {c-r-dx} {dy}', stroke=rainbow[n+1], fill='none', - stroke_width='0.05mm', stroke_linecap='round')) - svg_stuff.append(Tag('path', d=f'M {c+r+dx} {-dy} L {c+r-dx} {dy}', stroke=rainbow[n+1], fill='none', - stroke_width='0.05mm', stroke_linecap='round')) - - #print(f'spiral angle {degrees(alpha[i]):.2f}', file=sys.stderr) - - for i, (a1, a2) in enumerate(zip(alpha[::-1], alpha[1::])): - amean = (a2+a1)/2 - pitch = (outer_radius - inner_radius) / turns_per_layer - clearance = pitch - trace_width - clearance *= cos(amean) - - x, y = inner_radius + (i + 1/2)*pitch, -0.5 - svg_stuff.append(Tag('text', - [f'{clearance:.5f}mm'], - x=x, - y=y, - text_anchor='start', - transform=f'rotate(-45 {x} {y})', - style=f'font: 1px bold sans-serif; fill: {rainbow[n+1]}')) - - svg_file('/tmp/test.svg', svg_stuff, 100, 100, -50, -50) - - if footprint_name: - name = footprint_name - elif outfile: - name = outfile.stem, - else: - name = 'generated_coil' - - if keepout_zone: - r = outer_diameter/2 + keepout_margin - tol = 0.05 # mm - n = ceil(pi / acos(1 - tol/r)) - pts = [(r*cos(a*2*pi/n), r*sin(a*2*pi/n)) for a in range(n)] - zones = [kicad_pr.Zone(layers=['*.Cu'], - hatch=kicad_pr.Hatch(), - filled_areas_thickness=False, - keepout=kicad_pr.ZoneKeepout(copperpour_allowed=False), - polygon=kicad_pr.ZonePolygon(pts=kicad_pr.PointList(xy=[kicad_pr.XYCoord(x=x, y=y) for x, y in pts])))] - else: - zones = [] - - if pcb: - obj = kicad_pcb.Board.empty_board( - zones=zones, - track_segments=[kicad_pcb.TrackSegment.from_footprint_line(line) for line in lines], - vias=[kicad_pcb.Via.from_pad(pad) for pad in pads if pad.type == kicad_pcb.Atom.thru_hole]) - obj.rebuild_trace_index() - seg = obj.track_segments[-1] - traces = [] - end = top_pad - layer = 'F.Cu' - while True: - tr = list(obj.find_connected_traces(end, layers=[layer])) - traces.append(tr) - if not isinstance(tr[-1], kicad_pcb.Via): - break - layer = 'B.Cu' if layer == 'F.Cu' else 'F.Cu' - end = tr[-1] - # remove start pad - traces[0] = traces[0][1:] - - r = outer_diameter/2 + 20 - if mesh_split_out: - traces_to_gmsh(traces, mesh_split_out, ((-r, -r), (r, r)), copper_thickness=copper_thickness, board_thickness=board_thickness) - - if mesh_out: - traces_to_gmsh_mag(traces, mesh_out, ((-r, -r), (r, r)), copper_thickness=copper_thickness, board_thickness=board_thickness) - - if mesh_mutual_out: - m_dx, m_dy, m_dz = mutual_offset_x, mutual_offset_y, mutual_offset_z - mutual_rotation_z = math.radians(mutual_rotation_z) - traces_to_gmsh_mag_mutual(traces, mesh_mutual_out, ((-r, -r), (r, r)), - copper_thickness=copper_thickness, board_thickness=board_thickness, - mutual_offset=(m_dx, m_dy, m_dz), mutual_rotation=(0, 0, mutual_rotation_z)) - - if magneticalc_out: - traces_to_magneticalc(traces, magneticalc_out) - -# for trace in traces: -# print(f'Trace {i}', file=sys.stderr) -# print(f' Length: {len(trace)}', file=sys.stderr) -# print(f' Start: {trace[0]}', file=sys.stderr) -# print(f' End: {trace[-1]}', file=sys.stderr) -# print(f' Layer: {trace[1].layer}', file=sys.stderr) - - #for e in obj.find_connected_traces(seg, layers=seg.layer_mask): - # print(getattr(e, 'layer', ''), str(e)[:80], file=sys.stderr) - #nodes, edges = obj.track_skeleton(pads[-1]) - #for node, node_edges in edges.items(): - # print(f'Node {node} with {len(node_edges)} edges', file=sys.stderr) - # for i, e in enumerate(node_edges): - # print(f' Edge {i}', file=sys.stderr) - # for elem in e: - # print(' ', elem, file=sys.stderr) - - else: - obj = kicad_fp.Footprint( - name=name, - generator=kicad_fp.Atom('GerbonaraTwistedCoilGenV1'), - layer='F.Cu', - descr=f"{turns} turn {outer_diameter:.2f} mm diameter twisted coil footprint, inductance approximately {L:.6f} µH. Generated by gerbonara'c Twisted Coil generator, version {__version__}.", - clearance=clearance, - zone_connect=0, - lines=lines, - arcs=arcs, - pads=pads, - zones=zones, - ) - - if clipboard: - try: - data = obj.serialize() - print(f'Running {copy[0]}.', file=sys.stderr) - proc = subprocess.Popen(copy, stdin=subprocess.PIPE, text=True) - proc.communicate(data) - print('passed to wl-clip:', data) - except FileNotFoundError: - print(f'Error: --clipboard requires the {copy[0]} and {paste[0]} utilities from {cliputil} to be installed.', file=sys.stderr) - elif not outfile: - print(obj.serialize()) - else: - obj.write(outfile) - -if __name__ == '__main__': - generate() |