diff options
Diffstat (limited to 'gerbonara')
-rw-r--r-- | gerbonara/gerber/aperture_macros/parse.py | 153 | ||||
-rw-r--r-- | gerbonara/gerber/gerber_primitives.py | 14 | ||||
-rw-r--r-- | gerbonara/gerber/graphic_objects.py | 165 |
3 files changed, 332 insertions, 0 deletions
diff --git a/gerbonara/gerber/aperture_macros/parse.py b/gerbonara/gerber/aperture_macros/parse.py new file mode 100644 index 0000000..47f45d1 --- /dev/null +++ b/gerbonara/gerber/aperture_macros/parse.py @@ -0,0 +1,153 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +# Copyright 2021 Jan Götte <gerbonara@jaseg.de> + +import operator +import re +import ast +import copy +import math + +import primitive as ap +from expression import * + +from .. import apertures + +def rad_to_deg(x): + return (x / math.pi) * 180 + +def _map_expression(node): + if isinstance(node, ast.Num): + return ConstantExpression(node.n) + + elif isinstance(node, ast.BinOp): + op_map = {ast.Add: operator.add, ast.Sub: operator.sub, ast.Mult: operator.mul, ast.Div: operator.truediv} + return OperatorExpression(op_map[type(node.op)], _map_expression(node.left), _map_expression(node.right)) + + elif isinstance(node, ast.UnaryOp): + if type(node.op) == ast.UAdd: + return _map_expression(node.operand) + else: + return OperatorExpression(operator.sub, ConstantExpression(0), _map_expression(node.operand)) + + elif isinstance(node, ast.Name): + return VariableExpression(int(node.id[3:])) # node.id has format var[0-9]+ + + else: + raise SyntaxError('Invalid aperture macro expression') + +def _parse_expression(expr): + expr = expr.lower().replace('x', '*') + expr = re.sub(r'\$([0-9]+)', r'var\1', expr) + try: + parsed = ast.parse(expr, mode='eval').body + except SyntaxError as e: + raise SyntaxError('Invalid aperture macro expression') from e + return _map_expression(parsed) + +class ApertureMacro: + def __init__(self, name=None, primitives=None, variables=None): + self._name = name + self.comments = [] + self.variables = variables or {} + self.primitives = primitives or [] + + @classmethod + def parse_macro(cls, name, macro, unit): + macro = cls(name) + + blocks = re.sub(r'\s', '', macro).split('*') + for block in blocks: + if not (block := block.strip()): # empty block + continue + + if block[0:1] == '0 ': # comment + macro.comments.append(Comment(block[2:])) + + if block[0] == '$': # variable definition + name, expr = block.partition('=') + number = int(name[1:]) + if number in macro.variables: + raise SyntaxError(f'Re-definition of aperture macro variable {number} inside macro') + macro.variables[number] = _parse_expression(expr) + + else: # primitive + primitive, *args = block.split(',') + args = [_parse_expression(arg) for arg in args] + primitive = ap.PRIMITIVE_CLASSES[int(primitive)](unit=unit, args=args + macro.primitives.append(primitive) + + @property + def name(self): + if self.name is not None: + return self.name + else: + return f'gn_{hash(self)}' + + def __str__(self): + return f'<Aperture macro, variables {str(self.variables)}, primitives {self.primitives}>' + + def __eq__(self, other): + return hasattr(other, to_gerber) and self.to_gerber() == other.to_gerber() + + def __hash__(self): + return hash(self.to_gerber()) + + def to_gerber(self, unit=None): + comments = [ c.to_gerber() for c in self.comments ] + variable_defs = [ f'${var.to_gerber(unit)}={expr}' for var, expr in self.variables.items() ] + primitive_defs = [ prim.to_gerber(unit) for prim in self.primitives ] + return '*\n'.join(comments + variable_defs + primitive_defs) + + def to_graphic_primitives(self, offset, rotation:'radians', parameters : [float], unit=None): + variables = dict(self.variables) + for number, value in enumerate(parameters): + if i in variables: + raise SyntaxError(f'Re-definition of aperture macro variable {i} through parameter {value}') + variables[i] = value + + return [ primitive.to_graphic_primitives(offset, rotation, variables, unit) for primitive in self.primitives ] + + def rotated(self, angle): + copy = copy.deepcopy(self) + for primitive in copy.primitives: + primitive.rotation += rad_to_deg(angle) + return copy + + +class GenericMacros: + deg_per_rad = 180 / math.pi + cons, var = VariableExpression + _generic_hole = lambda n: [ + ap.Circle(exposure=0, diameter=var(n), x=0, y=0), + ap.Rectangle(exposure=0, w=var(n), h=var(n+1), x=0, y=0, rotation=var(n+2) * deg_per_rad)] + + circle = ApertureMacro([ + ap.Circle(exposure=1, diameter=var(1), x=0, y=0, rotation=var(4) * deg_per_rad), + *_generic_hole(2)]) + + rect = ApertureMacro([ + ap.Rectangle(exposure=1, w=var(1), h=var(2), x=0, y=0, rotation=var(5) * deg_per_rad), + *_generic_hole(3) ]) + + # w must be larger than h + obround = ApertureMacro([ + ap.Rectangle(exposure=1, w=var(1), h=var(2), x=0, y=0, rotation=var(5) * deg_per_rad), + ap.Circle(exposure=1, diameter=var(2), x=+var(1)/2, y=0, rotation=var(5) * deg_per_rad), + ap.Circle(exposure=1, diameter=var(2), x=-var(1)/2, y=0, rotation=var(5) * deg_per_rad), + *_generic_hole(3) ]) + + polygon = ApertureMacro([ + ap.Polygon(exposure=1, n_vertices=var(2), x=0, y=0, diameter=var(1), rotation=var(3) * deg_per_rad), + pa.Circle(exposure=0, diameter=var(4), x=0, y=0)]) + + +if __name__ == '__main__': + import sys + #for line in sys.stdin: + #expr = _parse_expression(line.strip()) + #print(expr, '->', expr.optimized()) + + for primitive in parse_macro(sys.stdin.read(), 'mm'): + print(primitive) diff --git a/gerbonara/gerber/gerber_primitives.py b/gerbonara/gerber/gerber_primitives.py new file mode 100644 index 0000000..1a40948 --- /dev/null +++ b/gerbonara/gerber/gerber_primitives.py @@ -0,0 +1,14 @@ + +from apertures import * + +class GerberPrimitive: + pass + + def to_graphic_primitives(self): + pass + +class Line(GerberPrimitive): + pass + +class Arc(GerberPrimitive): + pass diff --git a/gerbonara/gerber/graphic_objects.py b/gerbonara/gerber/graphic_objects.py new file mode 100644 index 0000000..55d1b9c --- /dev/null +++ b/gerbonara/gerber/graphic_objects.py @@ -0,0 +1,165 @@ + +import graphic_primitives as gp + +class GerberObject: + _ : KW_ONLY + polarity_dark : bool = True + + def to_primitives(self): + raise NotImplementedError() + +@dataclass +class Flash(GerberObject): + x : float + y : float + aperture : object + + def with_offset(self, dx, dy): + return replace(self, x=self.x+dx, y=self.y+dy) + + def rotate(self, rotation, cx=None, cy=None): + self.x, self.y = gp.rotate_point(self.x, self.y, rotation, cx, cy) + + def to_primitives(self): + yield from self.aperture.flash(self.x, self.y) + + def to_statements(self, gs): + yield from gs.set_polarity(self.polarity_dark) + yield from gs.set_aperture(self.aperture) + yield FlashStmt(self.x, self.y) + +class Region(GerberObject): + def __init__(self, outline=[], arc_centers=None, *, polarity_dark): + super().__init__(self, polarity_dark=polarity_dark) + self.poly = gp.ArcPoly() + + def with_offset(self, dx, dy): + return Region([ (x+dx, y+dy) for x, y in outline ], radii, polarity_dark=self.polarity_dark) + + def rotate(self, angle, cx=0, cy=0): + self.poly.outline = [ gp.rotate_point(x, y, angle, cx, cy) for x, y in self.poly.outline ] + self.poly.arc_centers = [ gp.rotate_point(x, y, angle, cx, cy) for x, y in self.poly.arc_centers ] + + def append(self, obj): + if not self.outline: + self.poly.outline.append(obj.p1) + self.poly.outline.append(obj.p2) + + if isinstance(obj, Arc): + self.poly.arc_centers.append(obj.center) + else: + self.poly.arc_centers.append(None) + + def to_primitives(self): + self.poly.polarity_dark = polarity_dark + yield self.poly + + def to_statements(self, gs): + yield RegionStartStmt() + + yield from gs.set_current_point(self.poly.outline[0]) + + for point, arc_center in zip(self.poly.outline, self.poly.arc_centers): + if arc_center is None: + yield from gs.set_interpolation_mode(LinearModeStmt) + yield InterpolateStmt(*point) + + else: + cx, cy = arc_center + x2, y2 = point + yield from gs.set_interpolation_mode(CircularCCWModeStmt) + yield InterpolateStmt(x2, y2, cx-x2, cy-y2) + + yield RegionEndStmt() + + +class Line(GerberObject): + # Line with *round* end caps. + x1 : float + y1 : float + x2 : float + y2 : float + aperture : object + + def with_offset(self, dx, dy): + return replace(self, x1=self.x1+dx, y1=self.y1+dy, x2=self.x2+dx, y2=self.y2+dy) + + def rotate(self, rotation, cx=None, cy=None): + if cx is None: + cx = (self.x1 + self.x2) / 2 + cy = (self.y1 + self.y2) / 2 + self.x1, self.y1 = gp.rotate_point(self.x1, self.y1, rotation, cx, cy) + self.x2, self.y2 = gp.rotate_point(self.x2, self.y2, rotation, cx, cy) + + @property + def p1(self): + return self.x1, self.y1 + + @property + def p2(self): + return self.x2, self.y2 + + def to_primitives(self): + yield gp.Line(*self.p1, *self.p2, self.aperture.equivalent_width, polarity_dark=self.polarity_dark) + + def to_statements(self, gs): + yield from gs.set_aperture(self.aperture) + yield from gs.set_interpolation_mode(LinearModeStmt) + yield from gs.set_current_point(self.p1) + yield InterpolateStmt(*self.p2) + + +class Arc(GerberObject): + x : float + y : float + r : float + angle1 : float # radians! + angle2 : float # radians! + aperture : object + + @classmethod + def from_coords(kls, start, end, center_delta, aperture, flipped=False, polarity_dark=True): + x0, y0 = start + x1, y1 = end + dx, dy = center_delta + cx, cy = x0+dx, y0+dy + angle1 = math.atan2(y0-cy, x0-cx) + angle2 = math.atan2(y1-cy, x1-cx) + aperture = self.aperture + if flipped: + angle1, angle2 = angle2, angle1 + r = math.sqrt(dx**2 + dy**2) + # r should be approximately (depending on coordinate resolution) equal for center->start and center->end + return kls(cx, cy, r, angle1, angle2, polarity_dark=polarity_dark) + + def with_offset(self, dx, dy): + return replace(self, x=self.x+dx, y=self.y+dy) + + @property + def p1(self): + return self.x + self.r*sin(self.angle1), self.y + self.r*cos(self.angle1) + + @property + def p2(self): + return self.x + self.r*sin(self.angle2), self.y + self.r*cos(self.angle2) + + @property + def center(self): + return (self.x, self.y) + + def rotate(self, rotation, cx=None, cy=None): + self.x, self.y = gp.rotate_point(self.x, self.y, rotation, cx, cy) + self.angle1 = (self.angle1+rotation) % (2*math.pi) + self.angle2 = (self.angle2+rotation) % (2*math.pi) + + def to_primitives(self): + yield gp.Arc(self.x, self.y, self.r, self.angle1, self.angle2, self.aperture.equivalent_width, polarity_dark=self.polarity_dark) + + def to_statements(self, gs): + yield from gs.set_aperture(self.aperture) + yield from gs.set_interpolation_mode(CircularCCWModeStmt) + yield from gs.set_current_point(self.p1) + x2, y2 = self.p2 + yield InterpolateStmt(x2, y2, self.x-x2, self.y-y2) + + |