diff options
Diffstat (limited to 'gerbonara/utils.py')
-rw-r--r-- | gerbonara/utils.py | 54 |
1 files changed, 54 insertions, 0 deletions
diff --git a/gerbonara/utils.py b/gerbonara/utils.py index 6b2d5c1..53f6398 100644 --- a/gerbonara/utils.py +++ b/gerbonara/utils.py @@ -28,6 +28,7 @@ This module provides utility functions for working with Gerber and Excellon file import os import re import textwrap +from functools import reduce from enum import Enum import math @@ -396,6 +397,33 @@ def arc_bounds(x1, y1, x2, y2, cx, cy, clockwise): return (min_x+cx, min_y+cy), (max_x+cx, max_y+cy) +def convex_hull(points): + ''' + Returns points on convex hull in CCW order according to Graham's scan algorithm. + By Tom Switzer <thomas.switzer@gmail.com>. + ''' + # https://gist.github.com/arthur-e/5cf52962341310f438e96c1f3c3398b8 + TURN_LEFT, TURN_RIGHT, TURN_NONE = (1, -1, 0) + + def cmp(a, b): + return (a > b) - (a < b) + + def turn(p, q, r): + return cmp((q[0] - p[0])*(r[1] - p[1]) - (r[0] - p[0])*(q[1] - p[1]), 0) + + def keep_left(hull, r): + while len(hull) > 1 and turn(hull[-2], hull[-1], r) != TURN_LEFT: + hull.pop() + if not len(hull) or hull[-1] != r: + hull.append(r) + return hull + + points = sorted(points) + l = reduce(keep_left, points, []) + u = reduce(keep_left, reversed(points), []) + return l.extend(u[i] for i in range(1, len(u) - 1)) or l + + def point_line_distance(l1, l2, p): """ Calculate distance between infinite line through l1 and l2, and point p. """ # https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line @@ -471,3 +499,29 @@ def setup_svg(tags, bounds, margin=0, arg_unit=MM, svg_unit=MM, pagecolor='white **namespaces, root=True) + +def point_in_polygon(point, poly): + # https://stackoverflow.com/questions/217578/how-can-i-determine-whether-a-2d-point-is-within-a-polygon + # https://wrfranklin.org/Research/Short_Notes/pnpoly.html + + if not poly: + return False + + res = False + tx, ty = point + xp, yp = poly[-1] + for x, y in poly: + if yp == ty == y and ((x > tx) != (xp > tx)): # test point on horizontal segment + return True + if xp == tx == x and ((y > ty) != (yp > ty)): # test point on vertical segment + return True + if ((y > ty) != (yp > ty)): + tmp = ((xp-x) * (ty-y) / (yp-y) + x) + if tx == tmp: # test point on diagonal segment + return True + elif tx < tmp: + res = not res + xp, yp = x, y + + return res + |