diff options
Diffstat (limited to 'gerbonara/graphic_objects.py')
-rw-r--r-- | gerbonara/graphic_objects.py | 156 |
1 files changed, 65 insertions, 91 deletions
diff --git a/gerbonara/graphic_objects.py b/gerbonara/graphic_objects.py index 2b9dc3e..14cfc66 100644 --- a/gerbonara/graphic_objects.py +++ b/gerbonara/graphic_objects.py @@ -19,9 +19,9 @@ import math import copy from dataclasses import dataclass, astuple, field, fields -from itertools import zip_longest +from itertools import zip_longest, pairwise, islice, cycle -from .utils import MM, InterpMode, to_unit, rotate_point, sum_bounds +from .utils import MM, InterpMode, to_unit, rotate_point, sum_bounds, approximate_arc, sweep_angle from . import graphic_primitives as gp from .aperture_macros import primitive as amp @@ -278,9 +278,15 @@ class Region(GraphicObject): * A region is always exactly one connected component. * A region must not overlap itself anywhere. * A region cannot have holes. + * The last outline point of the region must be equal to the first. There is one exception from the last two rules: To emulate a region with a hole in it, *cut-ins* are allowed. At a cut-in, the region is allowed to touch (but never overlap!) itself. + + When ``arc_centers`` is empty, this region has only straight outline segments. When ``arc_centers`` is not empty, + the i-th entry defines the i-th outline segment, with a ``None`` entry designating a straight line segment. + An arc is defined by a ``(clockwise, (cx, cy))`` tuple, where ``clockwise`` can be ``True`` for a clockwise arc, or + ``False`` for a counter-clockwise arc. ``cx`` and ``cy`` are the absolute coordinates of the arc's center. """ def __init__(self, outline=None, arc_centers=None, *, unit=MM, polarity_dark=True): @@ -304,8 +310,8 @@ class Region(GraphicObject): def _rotate(self, angle, cx=0, cy=0): self.outline = [ gp.rotate_point(x, y, angle, cx, cy) for x, y in self.outline ] self.arc_centers = [ - (arc[0], gp.rotate_point(*arc[1], angle, cx-p[0], cy-p[1])) if arc else None - for p, arc in zip_longest(self.outline, self.arc_centers) ] + (arc[0], gp.rotate_point(*arc[1], angle, cx, cy)) if arc else None + for arc in self.arc_centers ] def _scale(self, factor): self.outline = [ (x*factor, y*factor) for x, y in self.outline ] @@ -322,6 +328,10 @@ class Region(GraphicObject): (x, y+h), ], unit=unit) + @classmethod + def from_arc_poly(kls, arc_poly, polarity_dark=True, unit=MM): + return kls(arc_poly.outline, arc_poly.arc_centers, polarity_dark=polarity_dark, unit=unit) + def append(self, obj): if obj.unit != self.unit: obj = obj.converted(self.unit) @@ -331,48 +341,49 @@ class Region(GraphicObject): self.outline.append(obj.p2) if isinstance(obj, Arc): - self.arc_centers.append((obj.clockwise, obj.center_relative)) + self.arc_centers.append((obj.clockwise, obj.center)) else: self.arc_centers.append(None) - def close(self): - if not self.outline: - return + def iter_segments(self, tolerance=1e-6): + for points, arc in zip_longest(pairwise(self.outline), self.arc_centers): + if arc: + if points: + yield *points, arc + else: + yield self.outline[-1], self.outline[0], arc + return + else: + if not points: + break + yield *points, (None, (None, None)) - if self.outline[-1] != self.outline[0]: - self.outline.append(self.outline[0]) + # Close outline if necessary. + if math.dist(self.outline[0], self.outline[-1]) > tolerance: + yield self.outline[-1], self.outline[0], (None, (None, None)) def outline_objects(self, aperture=None): - for p1, p2, arc in zip_longest(self.outline, self.outline[1:] + self.outline[:1], self.arc_centers): - if arc: - clockwise, pc = arc - yield Arc(*p1, *p2, *pc, clockwise, aperture=aperture, unit=self.unit, polarity_dark=self.polarity_dark) + for p1, p2, (clockwise, center) in self.iter_segments(): + if center: + yield Arc(*p1, *p2, *center, clockwise, aperture=aperture, unit=self.unit, polarity_dark=self.polarity_dark) else: yield Line(*p1, *p2, aperture=aperture, unit=self.unit, polarity_dark=self.polarity_dark) - def _aperture_macro_primitives(self, max_error=1e-2, unit=MM): + def _aperture_macro_primitives(self, max_error=1e-2, clip_max_error=True, unit=MM): # unit is only for max_error, the resulting primitives will always be in MM if len(self.outline) < 2: return - points = [self.outline[0]] - for p1, p2, arc in zip_longest(self.outline[:-1], self.outline[1:], self.arc_centers): - if arc: - clockwise, pc = arc - #r = math.hypot(*pc) # arc center is relative to p1. - #d = math.dist(p1, p2) - #err = r - math.sqrt(r**2 - (d/(2*n))**2) - #n = math.ceil(1/(2*math.sqrt(r**2 - (r - max_err)**2)/d)) - arc = Arc(*p1, *p2, *pc, clockwise, unit=self.unit, polarity_dark=self.polarity_dark, aperture=None) - for line in arc.approximate(max_error=max_error, unit=unit): - points.append(line.p2) - + points = [] + for p1, p2, (clockwise, center) in self.iter_segments(): + if center: + for p in approximate_arc(*center, *p1, *p2, clockwise, + max_error=max_error, clip_max_error=clip_max_error): + points.append(p) + points.pop() else: - points.append(p2) - - if points[-1] != points[0]: - points.append(points[0]) + points.append(p1) yield amp.Outline(self.unit, int(self.polarity_dark), len(points)-1, tuple(coord for p in points for coord in p)) @@ -389,6 +400,9 @@ class Region(GraphicObject): yield gp.ArcPoly(conv_outline, conv_arc, polarity_dark=self.polarity_dark) def to_statements(self, gs): + if len(self.outline) < 3: + return + yield from gs.set_polarity(self.polarity_dark) yield 'G36*' # Repeat interpolation mode at start of region statement to work around gerbv bug. Without this, gerbv will @@ -398,32 +412,24 @@ class Region(GraphicObject): yield from gs.set_current_point(self.outline[0], unit=self.unit) - for point, arc_center in zip_longest(self.outline[1:], self.arc_centers): - if point is None and arc_center is None: + for previous_point, point, (clockwise, center) in self.iter_segments(): + if point is None and center is None: break - if arc_center is None: - yield from gs.set_interpolation_mode(InterpMode.LINEAR) + x = gs.file_settings.write_gerber_value(point[0], self.unit) + y = gs.file_settings.write_gerber_value(point[1], self.unit) - x = gs.file_settings.write_gerber_value(point[0], self.unit) - y = gs.file_settings.write_gerber_value(point[1], self.unit) + if clockwise is None: + yield from gs.set_interpolation_mode(InterpMode.LINEAR) yield f'X{x}Y{y}D01*' - gs.update_point(*point, unit=self.unit) - else: - clockwise, (cx, cy) = arc_center - x2, y2 = point yield from gs.set_interpolation_mode(InterpMode.CIRCULAR_CW if clockwise else InterpMode.CIRCULAR_CCW) - - x = gs.file_settings.write_gerber_value(x2, self.unit) - y = gs.file_settings.write_gerber_value(y2, self.unit) - # TODO are these coordinates absolute or relative now?! - i = gs.file_settings.write_gerber_value(cx, self.unit) - j = gs.file_settings.write_gerber_value(cy, self.unit) + i = gs.file_settings.write_gerber_value(center[0]-previous_point[0], self.unit) + j = gs.file_settings.write_gerber_value(center[1]-previous_point[1], self.unit) yield f'X{x}Y{y}I{i}J{j}D01*' - gs.update_point(x2, y2, unit=self.unit) + gs.update_point(*point, unit=self.unit) yield 'G37*' @@ -605,22 +611,8 @@ class Arc(GraphicObject): :returns: Angle in clockwise radian between ``0`` and ``2*math.pi`` :rtype: float """ - cx, cy = self.cx + self.x1, self.cy + self.y1 - x1, y1 = self.x1 - cx, self.y1 - cy - x2, y2 = self.x2 - cx, self.y2 - cy - - a1, a2 = math.atan2(y1, x1), math.atan2(y2, x2) - f = abs(a2 - a1) - if not self.clockwise: - if a2 > a1: - return a2 - a1 - else: - return 2*math.pi - abs(a2 - a1) - else: - if a1 > a2: - return a1 - a2 - else: - return 2*math.pi - abs(a1 - a2) + + return sweep_angle(self.cx+self.x1, self.cy+self.y1, self.x1, self.y1, self.x2, self.y2, self.clockwise) @property def p1(self): @@ -677,34 +669,16 @@ class Arc(GraphicObject): :returns: list of :py:class:`~.graphic_objects.Line` instances. :rtype: list """ - # TODO the max_angle calculation below is a bit off -- we over-estimate the error, and thus produce finer - # results than necessary. Fix this. - - r = math.hypot(self.cx, self.cy) max_error = self.unit(max_error, unit) - if clip_max_error: - # 1 - math.sqrt(1 - 0.5*math.sqrt(2)) - max_error = min(max_error, r*0.4588038998538031) - - elif max_error >= r: - return [Line(*self.p1, *self.p2, aperture=self.aperture, polarity_dark=self.polarity_dark, unit=self.unit)] - - # see https://www.mathopenref.com/sagitta.html - l = math.sqrt(r**2 - (r - max_error)**2) - - angle_max = math.asin(l/r) - sweep_angle = self.sweep_angle() - num_segments = math.ceil(sweep_angle / angle_max) - angle = sweep_angle / num_segments - - if not self.clockwise: - angle = -angle - - cx, cy = self.center - points = [ rotate_point(self.x1, self.y1, i*angle, cx, cy) for i in range(num_segments + 1) ] - return [ Line(*p1, *p2, aperture=self.aperture, polarity_dark=self.polarity_dark, unit=self.unit) - for p1, p2 in zip(points[0::], points[1::]) ] + return [Line(*p1, *p2, aperture=self.aperture, polarity_dark=self.polarity_dark, unit=self.unit) + for p1, p2 in pairwise(approximate_arc( + self.cx+self.x1, self.cy+self.y1, + self.x1, self.y1, + self.x2, self.y2, + self.clockwise, + max_error=max_error, + clip_max_error=clip_max_error))] def _rotate(self, rotation, cx=0, cy=0): # rotate center first since we need old x1, y1 here @@ -726,7 +700,7 @@ class Arc(GraphicObject): w = self.aperture.equivalent_width(unit) if self.aperture else 0 return gp.Arc(x1=conv.x1, y1=conv.y1, x2=conv.x2, y2=conv.y2, - cx=conv.cx, cy=conv.cy, + cx=conv.cx+conv.x1, cy=conv.cy+conv.y1, clockwise=self.clockwise, width=w, polarity_dark=self.polarity_dark) |