summaryrefslogtreecommitdiff
path: root/gerbonara/gerber/primitives.py
diff options
context:
space:
mode:
Diffstat (limited to 'gerbonara/gerber/primitives.py')
-rw-r--r--gerbonara/gerber/primitives.py932
1 files changed, 0 insertions, 932 deletions
diff --git a/gerbonara/gerber/primitives.py b/gerbonara/gerber/primitives.py
deleted file mode 100644
index d505ddb..0000000
--- a/gerbonara/gerber/primitives.py
+++ /dev/null
@@ -1,932 +0,0 @@
-#! /usr/bin/env python
-# -*- coding: utf-8 -*-
-
-# copyright 2016 Hamilton Kibbe <ham@hamiltonkib.be>
-
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-
-# http://www.apache.org/licenses/LICENSE-2.0
-
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import math
-from operator import add
-from itertools import combinations
-from .utils import validate_coordinates, inch, metric, convex_hull
-from .utils import rotate_point, nearly_equal
-
-
-
-class Primitive:
- def __init__(self, polarity_dark=True, rotation=0, **meta):
- self.polarity_dark = polarity_dark
- self.meta = meta
- self.rotation = rotation
-
- def __eq__(self, other):
- return self.__dict__ == other.__dict__
-
- def aperture(self):
- return None
-
-
-class Line(Primitive):
- def __init__(self, start, end, aperture=None, polarity_dark=True, rotation=0, **meta):
- super().__init__(polarity_dark, rotation, **meta)
- self.start = start
- self.end = end
- self.aperture = aperture
-
- @property
- def angle(self):
- delta_x, delta_y = tuple(end - start for end, start in zip(self.end, self.start))
- return math.atan2(delta_y, delta_x)
-
- @property
- def bounding_box(self):
- if isinstance(self.aperture, Circle):
- width_2 = self.aperture.radius
- height_2 = width_2
- else:
- width_2 = self.aperture.width / 2.
- height_2 = self.aperture.height / 2.
- min_x = min(self.start[0], self.end[0]) - width_2
- max_x = max(self.start[0], self.end[0]) + width_2
- min_y = min(self.start[1], self.end[1]) - height_2
- max_y = max(self.start[1], self.end[1]) + height_2
- return (min_x, min_y), (max_x, max_y)
-
- @property
- def bounding_box_no_aperture(self):
- '''Gets the bounding box without the aperture'''
- min_x = min(self.start[0], self.end[0])
- max_x = max(self.start[0], self.end[0])
- min_y = min(self.start[1], self.end[1])
- max_y = max(self.start[1], self.end[1])
- return ((min_x, min_y), (max_x, max_y))
-
- @property
- def vertices(self):
- if self._vertices is None:
- start = self.start
- end = self.end
- if isinstance(self.aperture, Rectangle):
- width = self.aperture.width
- height = self.aperture.height
-
- # Find all the corners of the start and end position
- start_ll = (start[0] - (width / 2.), start[1] - (height / 2.))
- start_lr = (start[0] + (width / 2.), start[1] - (height / 2.))
- start_ul = (start[0] - (width / 2.), start[1] + (height / 2.))
- start_ur = (start[0] + (width / 2.), start[1] + (height / 2.))
- end_ll = (end[0] - (width / 2.), end[1] - (height / 2.))
- end_lr = (end[0] + (width / 2.), end[1] - (height / 2.))
- end_ul = (end[0] - (width / 2.), end[1] + (height / 2.))
- end_ur = (end[0] + (width / 2.), end[1] + (height / 2.))
-
- # The line is defined by the convex hull of the points
- self._vertices = convex_hull((start_ll, start_lr, start_ul, start_ur, end_ll, end_lr, end_ul, end_ur))
- elif isinstance(self.aperture, Polygon):
- points = [map(add, point, vertex)
- for vertex in self.aperture.vertices
- for point in (start, end)]
- self._vertices = convex_hull(points)
- return self._vertices
-
- def offset(self, x_offset=0, y_offset=0):
- self._changed()
- self.start = tuple([coord + offset for coord, offset
- in zip(self.start, (x_offset, y_offset))])
- self.end = tuple([coord + offset for coord, offset
- in zip(self.end, (x_offset, y_offset))])
-
- def equivalent(self, other, offset):
-
- if not isinstance(other, Line):
- return False
-
- equiv_start = tuple(map(add, other.start, offset))
- equiv_end = tuple(map(add, other.end, offset))
-
-
- return nearly_equal(self.start, equiv_start) and nearly_equal(self.end, equiv_end)
-
- def __str__(self):
- return "<Line {} to {}>".format(self.start, self.end)
-
- def __repr__(self):
- return str(self)
-
-class Arc(Primitive):
- def __init__(self, start, end, center, direction, aperture, level_polarity=None, **kwargs):
- super(Arc, self).__init__(**kwargs)
- self.level_polarity = level_polarity
- self._start = start
- self._end = end
- self._center = center
- self.direction = direction
- self.aperture = aperture
- self._to_convert = ['start', 'end', 'center', 'aperture']
-
- @property
- def flashed(self):
- return False
-
- @property
- def start(self):
- return self._start
-
- @start.setter
- def start(self, value):
- self._changed()
- self._start = value
-
- @property
- def end(self):
- return self._end
-
- @end.setter
- def end(self, value):
- self._changed()
- self._end = value
-
- @property
- def center(self):
- return self._center
-
- @center.setter
- def center(self, value):
- self._changed()
- self._center = value
-
- @property
- def radius(self):
- dy, dx = tuple([start - center for start, center
- in zip(self.start, self.center)])
- return math.sqrt(dy ** 2 + dx ** 2)
-
- @property
- def start_angle(self):
- dx, dy = tuple([start - center for start, center
- in zip(self.start, self.center)])
- return math.atan2(dy, dx)
-
- @property
- def end_angle(self):
- dx, dy = tuple([end - center for end, center
- in zip(self.end, self.center)])
- return math.atan2(dy, dx)
-
- @property
- def sweep_angle(self):
- two_pi = 2 * math.pi
- theta0 = (self.start_angle + two_pi) % two_pi
- theta1 = (self.end_angle + two_pi) % two_pi
- if self.direction == 'counterclockwise':
- return abs(theta1 - theta0)
- else:
- theta0 += two_pi
- return abs(theta0 - theta1) % two_pi
-
- @property
- def bounding_box(self):
- if self._bounding_box is None:
- two_pi = 2 * math.pi
- theta0 = (self.start_angle + two_pi) % two_pi
- theta1 = (self.end_angle + two_pi) % two_pi
- points = [self.start, self.end]
- x, y = zip(*points)
- if hasattr(self.aperture, 'radius'):
- min_x = min(x) - self.aperture.radius
- max_x = max(x) + self.aperture.radius
- min_y = min(y) - self.aperture.radius
- max_y = max(y) + self.aperture.radius
- else:
- min_x = min(x) - self.aperture.width
- max_x = max(x) + self.aperture.width
- min_y = min(y) - self.aperture.height
- max_y = max(y) + self.aperture.height
-
- self._bounding_box = ((min_x, min_y), (max_x, max_y))
- return self._bounding_box
-
- @property
- def bounding_box_no_aperture(self):
- '''Gets the bounding box without considering the aperture'''
- two_pi = 2 * math.pi
- theta0 = (self.start_angle + two_pi) % two_pi
- theta1 = (self.end_angle + two_pi) % two_pi
- points = [self.start, self.end]
- x, y = zip(*points)
-
- min_x = min(x)
- max_x = max(x)
- min_y = min(y)
- max_y = max(y)
- return ((min_x, min_y), (max_x, max_y))
-
- def offset(self, x_offset=0, y_offset=0):
- self._changed()
- self.start = tuple(map(add, self.start, (x_offset, y_offset)))
- self.end = tuple(map(add, self.end, (x_offset, y_offset)))
- self.center = tuple(map(add, self.center, (x_offset, y_offset)))
-
-
-class Circle(Primitive):
- def __init__(self, position, diameter, polarity_dark=True):
- super(Circle, self).__init__(**kwargs)
- validate_coordinates(position)
- self._position = position
- self._diameter = diameter
- self.hole_diameter = hole_diameter
- self.hole_width = hole_width
- self.hole_height = hole_height
- self._to_convert = ['position', 'diameter', 'hole_diameter', 'hole_width', 'hole_height']
-
- @property
- def flashed(self):
- return True
-
- @property
- def position(self):
- return self._position
-
- @position.setter
- def position(self, value):
- self._changed()
- self._position = value
-
- @property
- def diameter(self):
- return self._diameter
-
- @diameter.setter
- def diameter(self, value):
- self._changed()
- self._diameter = value
-
- @property
- def radius(self):
- return self.diameter / 2.
-
- @property
- def hole_radius(self):
- if self.hole_diameter != None:
- return self.hole_diameter / 2.
- return None
-
- @property
- def bounding_box(self):
- if self._bounding_box is None:
- min_x = self.position[0] - self.radius
- max_x = self.position[0] + self.radius
- min_y = self.position[1] - self.radius
- max_y = self.position[1] + self.radius
- self._bounding_box = ((min_x, min_y), (max_x, max_y))
- return self._bounding_box
-
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
-
- def equivalent(self, other, offset):
- '''Is this the same as the other circle, ignoring the offiset?'''
-
- if not isinstance(other, Circle):
- return False
-
- if self.diameter != other.diameter or self.hole_diameter != other.hole_diameter:
- return False
-
- equiv_position = tuple(map(add, other.position, offset))
-
- return nearly_equal(self.position, equiv_position)
-
-
-class Rectangle(Primitive):
- """
- When rotated, the rotation is about the center point.
-
- Only aperture macro generated Rectangle objects can be rotated. If you aren't in a AMGroup,
- then you don't need to worry about rotation
- """
-
- def __init__(self, position, width, height, hole_diameter=0,
- hole_width=0, hole_height=0, **kwargs):
- super(Rectangle, self).__init__(**kwargs)
- validate_coordinates(position)
- self._position = position
- self._width = width
- self._height = height
- self.hole_diameter = hole_diameter
- self.hole_width = hole_width
- self.hole_height = hole_height
- self._to_convert = ['position', 'width', 'height', 'hole_diameter',
- 'hole_width', 'hole_height']
- # TODO These are probably wrong when rotated
- self._lower_left = None
- self._upper_right = None
-
- @property
- def flashed(self):
- return True
-
- @property
- def position(self):
- return self._position
-
- @position.setter
- def position(self, value):
- self._changed()
- self._position = value
-
- @property
- def width(self):
- return self._width
-
- @width.setter
- def width(self, value):
- self._changed()
- self._width = value
-
- @property
- def height(self):
- return self._height
-
- @height.setter
- def height(self, value):
- self._changed()
- self._height = value
-
- @property
- def hole_radius(self):
- """The radius of the hole. If there is no hole, returns None"""
- if self.hole_diameter != None:
- return self.hole_diameter / 2.
- return None
-
- @property
- def upper_right(self):
- return (self.position[0] + (self.axis_aligned_width / 2.),
- self.position[1] + (self.axis_aligned_height / 2.))
-
- @property
- def lower_left(self):
- return (self.position[0] - (self.axis_aligned_width / 2.),
- self.position[1] - (self.axis_aligned_height / 2.))
-
- @property
- def bounding_box(self):
- if self._bounding_box is None:
- ll = (self.position[0] - (self.axis_aligned_width / 2.),
- self.position[1] - (self.axis_aligned_height / 2.))
- ur = (self.position[0] + (self.axis_aligned_width / 2.),
- self.position[1] + (self.axis_aligned_height / 2.))
- self._bounding_box = ((ll[0], ll[1]), (ur[0], ur[1]))
- return self._bounding_box
-
- @property
- def vertices(self):
- if self._vertices is None:
- delta_w = self.width / 2.
- delta_h = self.height / 2.
- ll = ((self.position[0] - delta_w), (self.position[1] - delta_h))
- ul = ((self.position[0] - delta_w), (self.position[1] + delta_h))
- ur = ((self.position[0] + delta_w), (self.position[1] + delta_h))
- lr = ((self.position[0] + delta_w), (self.position[1] - delta_h))
- self._vertices = [((x * self._cos_theta - y * self._sin_theta),
- (x * self._sin_theta + y * self._cos_theta))
- for x, y in [ll, ul, ur, lr]]
- return self._vertices
-
- @property
- def axis_aligned_width(self):
- return (self._cos_theta * self.width + self._sin_theta * self.height)
-
- @property
- def axis_aligned_height(self):
- return (self._cos_theta * self.height + self._sin_theta * self.width)
-
- def equivalent(self, other, offset):
- """Is this the same as the other rect, ignoring the offset?"""
-
- if not isinstance(other, Rectangle):
- return False
-
- if self.width != other.width or self.height != other.height or self.rotation != other.rotation or self.hole_diameter != other.hole_diameter:
- return False
-
- equiv_position = tuple(map(add, other.position, offset))
-
- return nearly_equal(self.position, equiv_position)
-
- def __str__(self):
- return "<Rectangle W {} H {} R {}>".format(self.width, self.height, self.rotation * 180/math.pi)
-
- def __repr__(self):
- return self.__str__()
-
-
-class Obround(Primitive):
- def __init__(self, position, width, height, hole_diameter=0,
- hole_width=0,hole_height=0, **kwargs):
- super(Obround, self).__init__(**kwargs)
- validate_coordinates(position)
- self._position = position
- self._width = width
- self._height = height
- self.hole_diameter = hole_diameter
- self.hole_width = hole_width
- self.hole_height = hole_height
- self._to_convert = ['position', 'width', 'height', 'hole_diameter',
- 'hole_width', 'hole_height' ]
-
- @property
- def flashed(self):
- return True
-
- @property
- def position(self):
- return self._position
-
- @position.setter
- def position(self, value):
- self._changed()
- self._position = value
-
- @property
- def width(self):
- return self._width
-
- @width.setter
- def width(self, value):
- self._changed()
- self._width = value
-
- @property
- def height(self):
- return self._height
-
- @height.setter
- def height(self, value):
- self._changed()
- self._height = value
-
- @property
- def hole_radius(self):
- """The radius of the hole. If there is no hole, returns None"""
- if self.hole_diameter != None:
- return self.hole_diameter / 2.
-
- return None
-
- @property
- def orientation(self):
- return 'vertical' if self.height > self.width else 'horizontal'
-
- @property
- def bounding_box(self):
- if self._bounding_box is None:
- ll = (self.position[0] - (self.axis_aligned_width / 2.),
- self.position[1] - (self.axis_aligned_height / 2.))
- ur = (self.position[0] + (self.axis_aligned_width / 2.),
- self.position[1] + (self.axis_aligned_height / 2.))
- self._bounding_box = ((ll[0], ll[1]), (ur[0], ur[1]))
- return self._bounding_box
-
- @property
- def subshapes(self):
- if self.orientation == 'vertical':
- circle1 = Circle((self.position[0], self.position[1] +
- (self.height - self.width) / 2.), self.width)
- circle2 = Circle((self.position[0], self.position[1] -
- (self.height - self.width) / 2.), self.width)
- rect = Rectangle(self.position, self.width,
- (self.height - self.width))
- else:
- circle1 = Circle((self.position[0]
- - (self.height - self.width) / 2.,
- self.position[1]), self.height)
- circle2 = Circle((self.position[0]
- + (self.height - self.width) / 2.,
- self.position[1]), self.height)
- rect = Rectangle(self.position, (self.width - self.height),
- self.height)
- return {'circle1': circle1, 'circle2': circle2, 'rectangle': rect}
-
- @property
- def axis_aligned_width(self):
- return (self._cos_theta * self.width +
- self._sin_theta * self.height)
-
- @property
- def axis_aligned_height(self):
- return (self._cos_theta * self.height +
- self._sin_theta * self.width)
-
-
-class Polygon(Primitive):
- """
- Polygon flash defined by a set number of sides.
- """
- def __init__(self, position, sides, radius, hole_diameter=0,
- hole_width=0, hole_height=0, **kwargs):
- super(Polygon, self).__init__(**kwargs)
- validate_coordinates(position)
- self._position = position
- self.sides = sides
- self._radius = radius
- self.hole_diameter = hole_diameter
- self.hole_width = hole_width
- self.hole_height = hole_height
- self._to_convert = ['position', 'radius', 'hole_diameter',
- 'hole_width', 'hole_height']
-
- @property
- def flashed(self):
- return True
-
- @property
- def diameter(self):
- return self.radius * 2
-
- @property
- def hole_radius(self):
- if self.hole_diameter != None:
- return self.hole_diameter / 2.
- return None
-
- @property
- def position(self):
- return self._position
-
- @position.setter
- def position(self, value):
- self._changed()
- self._position = value
-
- @property
- def radius(self):
- return self._radius
-
- @radius.setter
- def radius(self, value):
- self._changed()
- self._radius = value
-
- @property
- def bounding_box(self):
- if self._bounding_box is None:
- min_x = self.position[0] - self.radius
- max_x = self.position[0] + self.radius
- min_y = self.position[1] - self.radius
- max_y = self.position[1] + self.radius
- self._bounding_box = ((min_x, min_y), (max_x, max_y))
- return self._bounding_box
-
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
-
- @property
- def vertices(self):
-
- offset = self.rotation
- delta_angle = 360.0 / self.sides
-
- points = []
- for i in range(self.sides):
- points.append(
- rotate_point((self.position[0] + self.radius, self.position[1]), offset + delta_angle * i, self.position))
- return points
-
-
- def equivalent(self, other, offset):
- """
- Is this the outline the same as the other, ignoring the position offset?
- """
-
- # Quick check if it even makes sense to compare them
- if type(self) != type(other) or self.sides != other.sides or self.radius != other.radius:
- return False
-
- equiv_pos = tuple(map(add, other.position, offset))
-
- return nearly_equal(self.position, equiv_pos)
-
-
-class AMGroup(Primitive):
- """
- """
- def __init__(self, amprimitives, stmt = None, **kwargs):
- """
-
- stmt : The original statment that generated this, since it is really hard to re-generate from primitives
- """
- super(AMGroup, self).__init__(**kwargs)
-
- self.primitives = []
- for amprim in amprimitives:
- prim = amprim.to_primitive(self.units)
- if isinstance(prim, list):
- for p in prim:
- self.primitives.append(p)
- elif prim:
- self.primitives.append(prim)
- self._position = None
- self._to_convert = ['_position', 'primitives']
- self.stmt = stmt
-
- def to_inch(self):
- if self.units == 'metric':
- super(AMGroup, self).to_inch()
-
- # If we also have a stmt, convert that too
- if self.stmt:
- self.stmt.to_inch()
-
-
- def to_metric(self):
- if self.units == 'inch':
- super(AMGroup, self).to_metric()
-
- # If we also have a stmt, convert that too
- if self.stmt:
- self.stmt.to_metric()
-
- @property
- def flashed(self):
- return True
-
- @property
- def bounding_box(self):
- # TODO Make this cached like other items
- xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
- minx, maxx = zip(*xlims)
- miny, maxy = zip(*ylims)
- min_x = min(minx)
- max_x = max(maxx)
- min_y = min(miny)
- max_y = max(maxy)
- return ((min_x, max_x), (min_y, max_y))
-
- @property
- def position(self):
- return self._position
-
- def offset(self, x_offset=0, y_offset=0):
- self._position = tuple(map(add, self._position, (x_offset, y_offset)))
-
- for primitive in self.primitives:
- primitive.offset(x_offset, y_offset)
-
- @position.setter
- def position(self, new_pos):
- '''
- Sets the position of the AMGroup.
- This offset all of the objects by the specified distance.
- '''
-
- if self._position:
- dx = new_pos[0] - self._position[0]
- dy = new_pos[1] - self._position[1]
- else:
- dx = new_pos[0]
- dy = new_pos[1]
-
- for primitive in self.primitives:
- primitive.offset(dx, dy)
-
- self._position = new_pos
-
- def equivalent(self, other, offset):
- '''
- Is this the macro group the same as the other, ignoring the position offset?
- '''
-
- if len(self.primitives) != len(other.primitives):
- return False
-
- # We know they have the same number of primitives, so now check them all
- for i in range(0, len(self.primitives)):
- if not self.primitives[i].equivalent(other.primitives[i], offset):
- return False
-
- # If we didn't find any differences, then they are the same
- return True
-
-class Outline(Primitive):
- """
- Outlines only exist as the rendering for a apeture macro outline.
- They don't exist outside of AMGroup objects
- """
-
- def __init__(self, primitives, **kwargs):
- super(Outline, self).__init__(**kwargs)
- self.primitives = primitives
- self._to_convert = ['primitives']
-
- if self.primitives[0].start != self.primitives[-1].end:
- raise ValueError('Outline must be closed')
-
- @property
- def flashed(self):
- return True
-
- @property
- def bounding_box(self):
- if self._bounding_box is None:
- xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
- minx, maxx = zip(*xlims)
- miny, maxy = zip(*ylims)
- min_x = min(minx)
- max_x = max(maxx)
- min_y = min(miny)
- max_y = max(maxy)
- self._bounding_box = ((min_x, max_x), (min_y, max_y))
- return self._bounding_box
-
- def offset(self, x_offset=0, y_offset=0):
- self._changed()
- for p in self.primitives:
- p.offset(x_offset, y_offset)
-
- @property
- def vertices(self):
- if self._vertices is None:
- theta = math.radians(360/self.sides)
- vertices = [(self.position[0] + (math.cos(theta * side) * self.radius),
- self.position[1] + (math.sin(theta * side) * self.radius))
- for side in range(self.sides)]
- self._vertices = [(((x * self._cos_theta) - (y * self._sin_theta)),
- ((x * self._sin_theta) + (y * self._cos_theta)))
- for x, y in vertices]
- return self._vertices
-
- @property
- def width(self):
- bounding_box = self.bounding_box()
- return bounding_box[1][0] - bounding_box[0][0]
-
- def equivalent(self, other, offset):
- '''
- Is this the outline the same as the other, ignoring the position offset?
- '''
-
- # Quick check if it even makes sense to compare them
- if type(self) != type(other) or len(self.primitives) != len(other.primitives):
- return False
-
- for i in range(0, len(self.primitives)):
- if not self.primitives[i].equivalent(other.primitives[i], offset):
- return False
-
- return True
-
-class Region(Primitive):
- """
- """
-
- def __init__(self, primitives, **kwargs):
- super(Region, self).__init__(**kwargs)
- self.primitives = primitives
- self._to_convert = ['primitives']
-
- @property
- def flashed(self):
- return False
-
- @property
- def bounding_box(self):
- if self._bounding_box is None:
- xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
- minx, maxx = zip(*xlims)
- miny, maxy = zip(*ylims)
- min_x = min(minx)
- max_x = max(maxx)
- min_y = min(miny)
- max_y = max(maxy)
- self._bounding_box = ((min_x, min_y), (max_x, max_y))
- return self._bounding_box
-
- def offset(self, x_offset=0, y_offset=0):
- self._changed()
- for p in self.primitives:
- p.offset(x_offset, y_offset)
-
-
-class Drill(Primitive):
- """ A drill hole
- """
- def __init__(self, position, diameter, **kwargs):
- super(Drill, self).__init__('dark', **kwargs)
- validate_coordinates(position)
- self._position = position
- self._diameter = diameter
- self._to_convert = ['position', 'diameter']
-
- @property
- def flashed(self):
- return False
-
- @property
- def position(self):
- return self._position
-
- @position.setter
- def position(self, value):
- self._changed()
- self._position = value
-
- @property
- def diameter(self):
- return self._diameter
-
- @diameter.setter
- def diameter(self, value):
- self._changed()
- self._diameter = value
-
- @property
- def radius(self):
- return self.diameter / 2.
-
- @property
- def bounding_box(self):
- if self._bounding_box is None:
- min_x = self.position[0] - self.radius
- max_x = self.position[0] + self.radius
- min_y = self.position[1] - self.radius
- max_y = self.position[1] + self.radius
- self._bounding_box = ((min_x, min_y), (max_x, max_y))
- return self._bounding_box
-
- def offset(self, x_offset=0, y_offset=0):
- self._changed()
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
-
- def __str__(self):
- return '<Drill %f %s (%f, %f)>' % (self.diameter, self.units, self.position[0], self.position[1])
-
-
-class Slot(Primitive):
- """ A drilled slot
- """
- def __init__(self, start, end, diameter, **kwargs):
- super(Slot, self).__init__('dark', **kwargs)
- validate_coordinates(start)
- validate_coordinates(end)
- self.start = start
- self.end = end
- self.diameter = diameter
- self._to_convert = ['start', 'end', 'diameter']
-
-
- @property
- def flashed(self):
- return False
-
- @property
- def bounding_box(self):
- if self._bounding_box is None:
- radius = self.diameter / 2.
- min_x = min(self.start[0], self.end[0]) - radius
- max_x = max(self.start[0], self.end[0]) + radius
- min_y = min(self.start[1], self.end[1]) - radius
- max_y = max(self.start[1], self.end[1]) + radius
- self._bounding_box = ((min_x, min_y), (max_x, max_y))
- return self._bounding_box
-
- def offset(self, x_offset=0, y_offset=0):
- self.start = tuple(map(add, self.start, (x_offset, y_offset)))
- self.end = tuple(map(add, self.end, (x_offset, y_offset)))
-
-
-class TestRecord(Primitive):
- """ Netlist Test record
- """
- __test__ = False # This is not a PyTest unit test.
-
- def __init__(self, position, net_name, layer, **kwargs):
- super(TestRecord, self).__init__(**kwargs)
- validate_coordinates(position)
- self.position = position
- self.net_name = net_name
- self.layer = layer
- self._to_convert = ['position']
-
-class RegionGroup:
- def __init__(self):
- self.outline = []
-
- def __bool__(self):
- return bool(self.outline)
-
- def append(self, primitive):
- self.outline.append(primitive)
-