summaryrefslogtreecommitdiff
path: root/gerbonara/gerber/panelize
diff options
context:
space:
mode:
Diffstat (limited to 'gerbonara/gerber/panelize')
-rw-r--r--gerbonara/gerber/panelize/composition.py192
-rw-r--r--gerbonara/gerber/panelize/dxf.py796
-rw-r--r--gerbonara/gerber/panelize/dxf_path.py412
-rw-r--r--gerbonara/gerber/panelize/gerber_statements.py49
-rw-r--r--gerbonara/gerber/panelize/utility.py20
5 files changed, 0 insertions, 1469 deletions
diff --git a/gerbonara/gerber/panelize/composition.py b/gerbonara/gerber/panelize/composition.py
deleted file mode 100644
index a30f959..0000000
--- a/gerbonara/gerber/panelize/composition.py
+++ /dev/null
@@ -1,192 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>
-import os
-from functools import reduce
-from ..cam import FileSettings
-from ..gerber_statements import EofStmt
-from ..excellon_statements import *
-from ..excellon import DrillSlot, DrillHit
-from .. import rs274x
-from . import excellon
-# from . import dxf
-
-class Composition(object):
- def __init__(self, settings = None, comments = None):
- self.settings = settings
- self.comments = comments if comments != None else []
-
-class GerberComposition(Composition):
- APERTURE_ID_BIAS = 10
-
- def __init__(self, settings=None, comments=None):
- super(GerberComposition, self).__init__(settings, comments)
- self.aperture_macros = {}
- self.apertures = []
- self.drawings = []
-
- def merge(self, file):
- if isinstance(file, rs274x.GerberFile):
- self._merge_gerber(file)
-# elif isinstance(file, dxf.DxfFile):
-# self._merge_dxf(file)
- else:
- raise Exception('unsupported file type')
-
- def dump(self, path):
- def statements():
- for k in self.aperture_macros:
- yield self.aperture_macros[k]
- for s in self.apertures:
- yield s
- for s in self.drawings:
- yield s
- yield EofStmt()
- self.settings.notation = 'absolute'
- self.settings.zeros = 'trailing'
- with open(path, 'w') as f:
- rs274x.write_gerber_header(f, self.settings)
- for statement in statements():
- f.write(statement.to_gerber(self.settings) + '\n')
-
- def _merge_gerber(self, file):
- aperture_macro_map = {}
- aperture_map = {}
-
- if self.settings:
- if self.settings.units == 'metric':
- file.to_metric()
- else:
- file.to_inch()
-
- for macro in file.aperture_macros:
- statement = file.aperture_macros[macro]
- name = statement.name
- newname = self._register_aperture_macro(statement)
- aperture_macro_map[name] = newname
-
- for statement in file.aperture_defs:
- if statement.param == 'AD':
- if statement.shape in aperture_macro_map:
- statement.shape = aperture_macro_map[statement.shape]
- dnum = statement.d
- newdnum = self._register_aperture(statement)
- aperture_map[dnum] = newdnum
-
- for statement in file.main_statements:
- if statement.type == 'APERTURE':
- statement.d = aperture_map[statement.d]
- self.drawings.append(statement)
-
- if not self.settings:
- self.settings = file.context
-
- def _merge_dxf(self, file):
- if self.settings:
- if self.settings.units == 'metric':
- file.to_metric()
- else:
- file.to_inch()
-
- file.dcode = self._register_aperture(file.aperture)
- self.drawings.append(file.statements)
-
- if not self.settings:
- self.settings = file.settings
-
-
- def _register_aperture_macro(self, statement):
- name = statement.name
- newname = name
- offset = 0
- while newname in self.aperture_macros:
- offset += 1
- newname = '%s_%d' % (name, offset)
- statement.name = newname
- self.aperture_macros[newname] = statement
- return newname
-
- def _register_aperture(self, statement):
- statement.d = len(self.apertures) + self.APERTURE_ID_BIAS
- self.apertures.append(statement)
- return statement.d
-
-class DrillComposition(Composition):
- def __init__(self, settings=None, comments=None):
- super(DrillComposition, self).__init__(settings, comments)
- self.tools = []
- self.hits = []
- self.dxf_statements = []
-
- def merge(self, file):
- if isinstance(file, excellon.ExcellonFileEx):
- self._merge_excellon(file)
- elif isinstance(file, DxfFile):
- self._merge_dxf(file)
- else:
- raise Exception('unsupported file type')
-
- def dump(self, path):
- def statements():
- for t in self.tools:
- yield ToolSelectionStmt(t.number).to_excellon(self.settings)
- for h in self.hits:
- if h.tool.number == t.number:
- yield h.to_excellon(self.settings)
- for num, statement in self.dxf_statements:
- if num == t.number:
- yield statement.to_excellon(self.settings)
- yield EndOfProgramStmt().to_excellon()
-
- self.settings.notation = 'absolute'
- self.settings.zeros = 'trailing'
- with open(path, 'w') as f:
- excellon.write_excellon_header(f, self.settings, self.tools)
- for statement in statements():
- f.write(statement + '\n')
-
- def _merge_excellon(self, file):
- tool_map = {}
-
- if not self.settings:
- self.settings = file.settings
- else:
- if self.settings.units == 'metric':
- file.to_metric()
- else:
- file.to_inch()
-
- for tool in iter(file.tools.values()):
- num = tool.number
- tool_map[num] = self._register_tool(tool)
-
- for hit in file.hits:
- hit.tool = tool_map[hit.tool.number]
- self.hits.append(hit)
-
- def _merge_dxf(self, file):
- if not self.settings:
- self.settings = file.settings
- else:
- if self.settings.units == 'metric':
- file.to_metric()
- else:
- file.to_inch()
-
- tool = self._register_tool(ExcellonTool(self.settings, number=1, diameter=file.width))
- self.dxf_statements.append((tool.number, file.statements))
-
- def _register_tool(self, tool):
- for existing in self.tools:
- if existing.equivalent(tool):
- return existing
- new_tool = ExcellonTool.from_tool(tool)
- new_tool.settings = self.settings
- def toolnums():
- for tool in self.tools:
- yield tool.number
- max_num = reduce(lambda x, y: x if x > y else y, toolnums(), 0)
- new_tool.number = max_num + 1
- self.tools.append(new_tool)
- return new_tool
diff --git a/gerbonara/gerber/panelize/dxf.py b/gerbonara/gerber/panelize/dxf.py
deleted file mode 100644
index 9eb9217..0000000
--- a/gerbonara/gerber/panelize/dxf.py
+++ /dev/null
@@ -1,796 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>
-
-import io, sys
-from math import pi, cos, sin, tan, atan, atan2, acos, asin, sqrt
-import dxfgrabber
-from ..cam import CamFile, FileSettings
-from ..utils import inch, metric, write_gerber_value, rotate_point
-from ..gerber_statements import ADParamStmt
-from ..excellon_statements import ExcellonTool
-from ..excellon_statements import CoordinateStmt
-from .utility import is_equal_point, is_equal_value
-from .dxf_path import generate_paths, judge_containment
-from .excellon import write_excellon_header
-from .rs274x import write_gerber_header
-
-ACCEPTABLE_ERROR = 0.001
-
-def _normalize_angle(start_angle, end_angle):
- angle = end_angle - start_angle
- if angle > 0:
- start = start_angle % 360
- else:
- angle = -angle
- start = end_angle % 360
- angle = min(angle, 360)
- start = start - 360 if start > 180 else start
-
- regions = []
- while angle > 0:
- end = start + angle
- if end <= 180:
- regions.append((start * pi / 180, end * pi / 180))
- angle = 0
- else:
- regions.append((start * pi / 180, pi))
- angle = end - 180
- start = -180
- return regions
-
-def _intersections_of_line_and_circle(start, end, center, radius, error_range):
- x1 = start[0] - center[0]
- y1 = start[1] - center[1]
- x2 = end[0] - center[0]
- y2 = end[1] - center[1]
-
- dx = x2 - x1
- dy = y2 - y1
- dr = sqrt(dx * dx + dy * dy)
- D = x1 * y2 - x2 * y1
-
- distance = abs(dy * x1 - dx * y1) / dr
-
- D2 = D * D
- dr2 = dr * dr
- r2 = radius * radius
- delta = r2 * dr2 - D2
- if distance > radius - error_range and distance < radius + error_range:
- delta = 0
- if delta < 0:
- return None
-
- sqrt_D = sqrt(delta)
- E_x = -dx * sqrt_D if dy < 0 else dx * sqrt_D
- E_y = abs(dy) * sqrt_D
-
- p1_x = (D * dy + E_x) / dr2
- p2_x = (D * dy - E_x) / dr2
- p1_y = (-D * dx + E_y) / dr2
- p2_y = (-D * dx - E_y) / dr2
-
- p1_angle = atan2(p1_y, p1_x)
- p2_angle = atan2(p2_y, p2_x)
- if dx == 0:
- p1_t = (p1_y - y1) / dy
- p2_t = (p2_y - y1) / dy
- else:
- p1_t = (p1_x - x1) / dx
- p2_t = (p2_x - x1) / dx
-
- if delta == 0:
- return (
- (p1_x + center[0], p1_y + center[1]),
- None,
- p1_angle, None,
- p1_t, None
- )
- else:
- return (
- (p1_x + center[0], p1_y + center[1]),
- (p2_x + center[0], p2_y + center[1]),
- p1_angle, p2_angle,
- p1_t, p2_t
- )
-
-class DxfStatement(object):
- def __init__(self, entity):
- self.entity = entity
- self.start = None
- self.end = None
- self.is_closed = False
-
- def to_inch(self):
- pass
-
- def to_metric(self):
- pass
-
- def is_equal_to(self, target, error_range=0):
- return False
-
- def reverse(self):
- raise Exception('Not implemented')
-
- def offset(self, offset_x, offset_y):
- raise Exception('Not supported')
-
- def rotate(self, angle, center=(0, 0)):
- raise Exception('Not supported')
-
-
-class DxfLineStatement(DxfStatement):
- @classmethod
- def from_entity(cls, entity):
- start = (entity.start[0], entity.start[1])
- end = (entity.end[0], entity.end[1])
- return cls(entity, start, end)
-
- @property
- def bounding_box(self):
- return (min(self.start[0], self.end[0]),
- min(self.start[1], self.end[1]),
- max(self.start[0], self.end[0]),
- max(self.start[1], self.end[1]))
-
- def __init__(self, entity, start, end):
- super(DxfLineStatement, self).__init__(entity)
- self.start = start
- self.end = end
-
- def to_inch(self):
- self.start = (
- inch(self.start[0]), inch(self.start[1]))
- self.end = (
- inch(self.end[0]), inch(self.end[1]))
-
- def to_metric(self):
- self.start = (
- metric(self.start[0]), metric(self.start[1]))
- self.end = (
- metric(self.end[0]), metric(self.end[1]))
-
- def is_equal_to(self, target, error_range=0):
- if not isinstance(target, DxfLineStatement):
- return False
- return (is_equal_point(self.start, target.start, error_range) and \
- is_equal_point(self.end, target.end, error_range)) or \
- (is_equal_point(self.start, target.end, error_range) and \
- is_equal_point(self.end, target.start, error_range))
-
- def reverse(self):
- pt = self.start
- self.start = self.end
- self.end = pt
-
- def dots(self, pitch, width, offset=0):
- x0, y0 = self.start
- x1, y1 = self.end
- y1 = self.end[1]
- xp = x1 - x0
- yp = y1 - y0
- l = sqrt(xp * xp + yp * yp)
- xd = xp * pitch / l
- yd = yp * pitch / l
- x0 += xp * offset / l
- y0 += yp * offset / l
-
- if offset > l + width / 2:
- return (None, offset - l)
- else:
- d = offset;
- while d < l + width / 2:
- yield ((x0, y0), d - l)
- x0 += xd
- y0 += yd
- d += pitch
-
- def offset(self, offset_x, offset_y):
- self.start = (self.start[0] + offset_x, self.start[1] + offset_y)
- self.end = (self.end[0] + offset_x, self.end[1] + offset_y)
-
- def rotate(self, angle, center=(0, 0)):
- self.start = rotate_point(self.start, angle, center)
- self.end = rotate_point(self.end, angle, center)
-
- def intersections_with_halfline(self, point_from, point_to, error_range):
- denominator = (self.end[0] - self.start[0]) * (point_to[1] - point_from[1]) - \
- (self.end[1] - self.start[1]) * (point_to[0] - point_from[0])
- de = error_range * error_range
- if denominator >= -de and denominator <= de:
- return []
- from_dx = point_from[0] - self.start[0]
- from_dy = point_from[1] - self.start[1]
- r = ((point_to[1] - point_from[1]) * from_dx -
- (point_to[0] - point_from[0]) * from_dy) / denominator
- s = ((self.end[1] - self.start[1]) * from_dx -
- (self.end[0] - self.start[0]) * from_dy) / denominator
- dx = (self.end[0] - self.start[0])
- dy = (self.end[1] - self.start[1])
- le = error_range / sqrt(dx * dx + dy * dy)
- if s < 0 or r < -le or r > 1 + le:
- return []
-
- pt = (self.start[0] + (self.end[0] - self.start[0]) * r,
- self.start[1] + (self.end[1] - self.start[1]) * r)
- if is_equal_point(pt, self.start, error_range):
- return []
- else:
- return [pt]
-
- def intersections_with_arc(self, center, radius, angle_regions, error_range):
- intersection = \
- _intersections_of_line_and_circle(self.start, self.end, center, radius, error_range)
- if intersection is None:
- return []
- else:
- p1, p2, p1_angle, p2_angle, p1_t, p2_t = intersection
-
- pts = []
- if p1_t >= 0 and p1_t <= 1:
- for region in angle_regions:
- if p1_angle >= region[0] and p1_angle <= region[1]:
- pts.append(p1)
- break
- if p2 is not None and p2_t >= 0 and p2_t <= 1:
- for region in angle_regions:
- if p2_angle >= region[0] and p2_angle <= region[1]:
- pts.append(p2)
- break
-
- return pts
-
-class DxfArcStatement(DxfStatement):
- def __init__(self, entity):
- super(DxfArcStatement, self).__init__(entity)
- if entity.dxftype == 'CIRCLE':
- self.radius = self.entity.radius
- self.center = (self.entity.center[0], self.entity.center[1])
- self.start = (self.center[0] + self.radius, self.center[1])
- self.end = self.start
- self.start_angle = 0
- self.end_angle = 360
- self.is_closed = True
- elif entity.dxftype == 'ARC':
- self.start_angle = self.entity.start_angle
- self.end_angle = self.entity.end_angle
- self.radius = self.entity.radius
- self.center = (self.entity.center[0], self.entity.center[1])
- self.start = (
- self.center[0] + self.radius * cos(self.start_angle / 180. * pi),
- self.center[1] + self.radius * sin(self.start_angle / 180. * pi),
- )
- self.end = (
- self.center[0] + self.radius * cos(self.end_angle / 180. * pi),
- self.center[1] + self.radius * sin(self.end_angle / 180. * pi),
- )
- angle = self.end_angle - self.start_angle
- self.is_closed = angle >= 360 or angle <= -360
- else:
- raise Exception('invalid DXF type was specified')
- self.angle_regions = _normalize_angle(self.start_angle, self.end_angle)
-
- @property
- def bounding_box(self):
- return (self.center[0] - self.radius, self.center[1] - self.radius,
- self.center[0] + self.radius, self.center[1] + self.radius)
-
- def to_inch(self):
- self.radius = inch(self.radius)
- self.center = (inch(self.center[0]), inch(self.center[1]))
- self.start = (inch(self.start[0]), inch(self.start[1]))
- self.end = (inch(self.end[0]), inch(self.end[1]))
-
- def to_metric(self):
- self.radius = metric(self.radius)
- self.center = (metric(self.center[0]), metric(self.center[1]))
- self.start = (metric(self.start[0]), metric(self.start[1]))
- self.end = (metric(self.end[0]), metric(self.end[1]))
-
- def is_equal_to(self, target, error_range=0):
- if not isinstance(target, DxfArcStatement):
- return False
- aerror_range = error_range / pi * self.radius * 180
- return is_equal_point(self.center, target.center, error_range) and \
- is_equal_value(self.radius, target.radius, error_range) and \
- ((is_equal_value(self.start_angle, target.start_angle, aerror_range) and
- is_equal_value(self.end_angle, target.end_angle, aerror_range)) or
- (is_equal_value(self.start_angle, target.end_angle, aerror_range) and
- is_equal_value(self.end_angle, target.end_angle, aerror_range)))
-
- def reverse(self):
- tmp = self.start_angle
- self.start_angle = self.end_angle
- self.end_angle = tmp
- tmp = self.start
- self.start = self.end
- self.end = tmp
-
- def dots(self, pitch, width, offset=0):
- angle = self.end_angle - self.start_angle
- afactor = 1 if angle > 0 else -1
- aangle = angle * afactor
- L = 2 * pi * self.radius
- l = L * aangle / 360
- pangle = pitch / L * 360
- wangle = width / L * 360
- oangle = offset / L * 360
-
- if offset > l + width / 2:
- yield (None, offset - l)
- else:
- da = oangle
- while da < aangle + wangle / 2:
- cangle = self.start_angle + da * afactor
- x = self.radius * cos(cangle / 180 * pi) + self.center[0]
- y = self.radius * sin(cangle / 180 * pi) + self.center[1]
- remain = (da - aangle) / 360 * L
- yield((x, y), remain)
- da += pangle
-
- def offset(self, offset_x, offset_y):
- self.center = (self.center[0] + offset_x, self.center[1] + offset_y)
- self.start = (self.start[0] + offset_x, self.start[1] + offset_y)
- self.end = (self.end[0] + offset_x, self.end[1] + offset_y)
-
- def rotate(self, angle, center=(0, 0)):
- self.start_angle += angle
- self.end_angle += angle
- self.center = rotate_point(self.center, angle, center)
- self.start = rotate_point(self.start, angle, center)
- self.end = rotate_point(self.end, angle, center)
- self.angle_regions = _normalize_angle(self.start_angle, self.end_angle)
-
- def intersections_with_halfline(self, point_from, point_to, error_range):
- intersection = \
- _intersections_of_line_and_circle(
- point_from, point_to, self.center, self.radius, error_range)
- if intersection is None:
- return []
- else:
- p1, p2, p1_angle, p2_angle, p1_t, p2_t = intersection
-
- if is_equal_point(p1, self.start, error_range):
- p1 = None
- elif p2 is not None and is_equal_point(p2, self.start, error_range):
- p2 = None
-
- def is_contained(angle, region, error):
- if angle >= region[0] - error and angle <= region[1] + error:
- return True
- if angle < 0 and region[1] > 0:
- angle = angle + 2 * pi
- elif angle > 0 and region[0] < 0:
- angle = angle - 2 * pi
- return angle >= region[0] - error and angle <= region[1] + error
-
- aerror = error_range * self.radius
- pts = []
- if p1 is not None and p1_t >= 0 and not is_equal_point(p1, self.start, error_range):
- for region in self.angle_regions:
- if is_contained(p1_angle, region, aerror):
- pts.append(p1)
- break
- if p2 is not None and p2_t >= 0 and not is_equal_point(p2, self.start, error_range):
- for region in self.angle_regions:
- if is_contained(p2_angle, region, aerror):
- pts.append(p2)
- break
-
- return pts
-
- def intersections_with_arc(self, center, radius, angle_regions, error_range):
- x1 = center[0] - self.center[0]
- y1 = center[1] - self.center[1]
- r1 = self.radius
- r2 = radius
- cd_sq = x1 * x1 + y1 * y1
- cd = sqrt(cd_sq)
- rd = abs(r1 - r2)
-
- if (cd >= 0 and cd <= rd) or cd >= r1 + r2:
- return []
-
- A = (cd_sq + r1 * r1 - r2 * r2) / 2
- scale = sqrt(cd_sq * r1 * r1 - A * A) / cd_sq
- xl = A * x1 / cd_sq
- xr = y1 * scale
- yl = A * y1 / cd_sq
- yr = x1 * scale
-
- pt1_x = xl + xr
- pt1_y = yl - yr
- pt2_x = xl - xr
- pt2_y = yl + yr
- pt1_angle1 = atan2(pt1_y, pt1_x)
- pt1_angle2 = atan2(pt1_y - y1, pt1_x - x1)
- pt2_angle1 = atan2(pt2_y, pt2_x)
- pt2_angle2 = atan2(pt2_y - y1, pt2_x - x1)
-
- aerror = error_range * self.radius
- pts=[]
- for region in self.angle_regions:
- if pt1_angle1 >= region[0] and pt1_angle1 <= region[1]:
- for region in angle_regions:
- if pt1_angle2 >= region[0] - aerror and pt1_angle2 <= region[1] + aerror:
- pts.append((pt1_x + self.center[0], pt1_y + self.center[1]))
- break
- break
- for region in self.angle_regions:
- if pt2_angle1 >= region[0] and pt2_angle1 <= region[1]:
- for region in angle_regions:
- if pt2_angle2 >= region[0] - aerror and pt2_angle2 <= region[1] + aerror:
- pts.append((pt2_x + self.center[0], pt2_y + self.center[1]))
- break
- break
- return pts
-
-class DxfPolylineStatement(DxfStatement):
- def __init__(self, entity):
- super(DxfPolylineStatement, self).__init__(entity)
- self.start = (self.entity.points[0][0], self.entity.points[0][1])
- self.is_closed = self.entity.is_closed
- if self.is_closed:
- self.end = self.start
- else:
- self.end = (self.entity.points[-1][0], self.entity.points[-1][1])
-
- def disassemble(self):
- class Item:
- pass
-
- def ptseq():
- for i in range(1, len(self.entity.points)):
- yield i
- if self.entity.is_closed:
- yield 0
-
- x0 = self.entity.points[0][0]
- y0 = self.entity.points[0][1]
- b = self.entity.bulge[0]
- for idx in ptseq():
- pt = self.entity.points[idx]
- x1 = pt[0]
- y1 = pt[1]
- if b == 0:
- item = Item()
- item.dxftype = 'LINE'
- item.start = (x0, y0)
- item.end = (x1, y1)
- item.is_closed = False
- yield DxfLineStatement.from_entity(item)
- else:
- ang = 4 * atan(b)
- xm = x0 + x1
- ym = y0 + y1
- t = 1 / tan(ang / 2)
- xc = (xm - t * (y1 - y0)) / 2
- yc = (ym + t * (x1 - x0)) / 2
- r = sqrt((x0 - xc)*(x0 - xc) + (y0 - yc)*(y0 - yc))
- rx0 = x0 - xc
- ry0 = y0 - yc
- rc = max(min(rx0 / r, 1.0), -1.0)
- start_angle = acos(rc) if ry0 > 0 else 2 * pi - acos(rc)
- start_angle *= 180 / pi
- end_angle = start_angle + ang * 180 / pi
-
- item = Item()
- item.dxftype = 'ARC'
- item.start = (x0, y0)
- item.end = (x1, y1)
- item.start_angle = start_angle
- item.end_angle = end_angle
- item.radius = r
- item.center = (xc, yc)
- item.is_closed = end_angle - start_angle >= 360
- yield DxfArcStatement(item)
-
- x0 = x1
- y0 = y1
- b = self.entity.bulge[idx]
-
- def to_inch(self):
- self.start = (inch(self.start[0]), inch(self.start[1]))
- self.end = (inch(self.end[0]), inch(self.end[1]))
- for idx in range(0, len(self.entity.points)):
- self.entity.points[idx] = (
- inch(self.entity.points[idx][0]), inch(self.entity.points[idx][1]))
-
- def to_metric(self):
- self.start = (metric(self.start[0]), metric(self.start[1]))
- self.end = (metric(self.end[0]), metric(self.end[1]))
- for idx in range(0, len(self.entity.points)):
- self.entity.points[idx] = (
- metric(self.entity.points[idx][0]), metric(self.entity.points[idx][1]))
-
- def offset(self, offset_x, offset_y):
- for idx in range(len(self.entity.points)):
- self.entity.points[idx] = (
- self.entity.points[idx][0] + offset_x, self.entity.points[idx][1] + offset_y)
-
- def rotate(self, angle, center=(0, 0)):
- for idx in range(len(self.entity.points)):
- self.entity.points[idx] = rotate_point(self.entity.points[idx], angle, center)
-
-class DxfStatements(object):
- def __init__(self, statements, units, dcode=10, draw_mode=None, fill_mode=None):
- if draw_mode is None:
- draw_mode = DxfFile.DM_LINE
- if fill_mode is None:
- fill_mode = DxfFile.FM_TURN_OVER
- self._units = units
- self.dcode = dcode
- self.draw_mode = draw_mode
- self.fill_mode = fill_mode
- self.pitch = inch(1) if self._units == 'inch' else 1
- self.width = 0
- self.error_range = inch(ACCEPTABLE_ERROR) if self._units == 'inch' else ACCEPTABLE_ERROR
- self.statements = list(filter(
- lambda i: not (isinstance(i, DxfLineStatement) and \
- is_equal_point(i.start, i.end, self.error_range)),
- statements
- ))
- self.close_paths, self.open_paths = generate_paths(self.statements, self.error_range)
- self.sorted_close_paths = []
- self.polarity = True # True means dark, False means clear
-
- @property
- def units(self):
- return _units
-
- def _polarity_command(self, polarity=None):
- if polarity is None:
- polarity = self.polarity
- return '%LPD*%' if polarity else '%LPC*%'
-
- def _prepare_sorted_close_paths(self):
- if self.sorted_close_paths:
- return
- for i in range(0, len(self.close_paths)):
- for j in range(i + 1, len(self.close_paths)):
- containee, container = judge_containment(
- self.close_paths[i], self.close_paths[j], self.error_range)
- if containee is not None:
- containee.containers.append(container)
- self.sorted_close_paths = sorted(self.close_paths, key=lambda path: len(path.containers))
-
- def to_gerber(self, settings=FileSettings()):
- def gerbers():
- yield 'G75*'
- yield self._polarity_command()
- yield 'D{0}*'.format(self.dcode)
- if self.draw_mode == DxfFile.DM_FILL:
- yield 'G36*'
- if self.fill_mode == DxfFile.FM_TURN_OVER:
- self._prepare_sorted_close_paths()
- polarity = self.polarity
- level = 0
- for path in self.sorted_close_paths:
- if len(path.containers) > level:
- level = len(path.containers)
- polarity = not polarity
- yield 'G37*'
- yield self._polarity_command(polarity)
- yield 'G36*'
- yield path.to_gerber(settings)
- else:
- for path in self.close_paths:
- yield path.to_gerber(settings)
- yield 'G37*'
- else:
- pitch = self.pitch if self.draw_mode == DxfFile.DM_MOUSE_BITES else 0
- for path in self.open_paths:
- yield path.to_gerber(settings, pitch=pitch, width=self.width)
- for path in self.close_paths:
- yield path.to_gerber(settings, pitch=pitch, width=self.width)
-
- return '\n'.join(gerbers())
-
- def to_excellon(self, settings=FileSettings()):
- if self.draw_mode == DxfFile.DM_FILL:
- return
- def drills():
- pitch = self.pitch if self.draw_mode == DxfFile.DM_MOUSE_BITES else 0
- for path in self.open_paths:
- yield path.to_excellon(settings, pitch=pitch, width=self.width)
- for path in self.close_paths:
- yield path.to_excellon(settings, pitch=pitch, width=self.width)
- return '\n'.join(drills())
-
- def to_inch(self):
- if self._units == 'metric':
- self._units = 'inch'
- self.pitch = inch(self.pitch)
- self.width = inch(self.width)
- self.error_range = inch(self.error_range)
- for path in self.open_paths:
- path.to_inch()
- for path in self.close_paths:
- path.to_inch()
-
- def to_metric(self):
- if self._units == 'inch':
- self._units = 'metric'
- self.pitch = metric(self.pitch)
- self.width = metric(self.width)
- self.error_range = metric(self.error_range)
- for path in self.open_paths:
- path.to_metric()
- for path in self.close_paths:
- path.to_metric()
-
- def offset(self, offset_x, offset_y):
- for path in self.open_paths:
- path.offset(offset_x, offset_y)
- for path in self.close_paths:
- path.offset(offset_x, offset_y)
-
- def rotate(self, angle, center=(0, 0)):
- for path in self.open_paths:
- path.rotate(angle, center)
- for path in self.close_paths:
- path.rotate(angle, center)
-
-class DxfFile(CamFile):
- DM_LINE = 0
- DM_FILL = 1
- DM_MOUSE_BITES = 2
-
- FM_SIMPLE = 0
- FM_TURN_OVER = 1
-
- FT_RX274X = 0
- FT_EXCELLON = 1
-
- @classmethod
- def from_dxf(cls, dxf, settings=None, draw_mode=None, filename=None):
- fsettings = settings if settings else \
- FileSettings(zero_suppression='leading')
-
- if dxf.header['$INSUNITS'] == 1:
- fsettings.units = 'inch'
- if not settings:
- fsettings.format = (2, 5)
- else:
- fsettings.units = 'metric'
- if not settings:
- fsettings.format = (3, 4)
-
- statements = []
- for entity in dxf.entities:
- if entity.dxftype == 'LWPOLYLINE':
- statements.append(DxfPolylineStatement(entity))
- elif entity.dxftype == 'LINE':
- statements.append(DxfLineStatement.from_entity(entity))
- elif entity.dxftype == 'CIRCLE':
- statements.append(DxfArcStatement(entity))
- elif entity.dxftype == 'ARC':
- statements.append(DxfArcStatement(entity))
-
- return cls(statements, fsettings, draw_mode, filename)
-
- @classmethod
- def rectangle(cls, width, height, left=0, bottom=0, units='metric', draw_mode=None, filename=None):
- if units == 'metric':
- settings = FileSettings(units=units, zero_suppression='leading', format=(3,4))
- else:
- settings = FileSettings(units=units, zero_suppression='leading', format=(2,5))
- statements = [
- DxfLineStatement(None, (left, bottom), (left + width, bottom)),
- DxfLineStatement(None, (left + width, bottom), (left + width, bottom + height)),
- DxfLineStatement(None, (left + width, bottom + height), (left, bottom + height)),
- DxfLineStatement(None, (left, bottom + height), (left, bottom)),
- ]
- return cls(statements, settings, draw_mode, filename)
-
- def __init__(self, statements, settings=None, draw_mode=None, filename=None):
- if not settings:
- settings = FileSettings(units='metric', format=(3,4), zero_suppression='leading')
- if draw_mode == None:
- draw_mode = self.DM_LINE
-
- super(DxfFile, self).__init__(settings=settings, filename=filename)
- self._draw_mode = draw_mode
- self._fill_mode = self.FM_TURN_OVER
-
- self.aperture = ADParamStmt.circle(dcode=10, diameter=0.0)
- if settings.units == 'inch':
- self.aperture.to_inch()
- else:
- self.aperture.to_metric()
- self.statements = DxfStatements(
- statements, self.units, dcode=self.aperture.d, draw_mode=self.draw_mode, fill_mode=self.filename)
-
- @property
- def dcode(self):
- return self.aperture.dcode
-
- @dcode.setter
- def dcode(self, value):
- self.aperture.d = value
- self.statements.dcode = value
-
- @property
- def width(self):
- return self.aperture.modifiers[0][0]
-
- @width.setter
- def width(self, value):
- self.aperture.modifiers = ([float(value),],)
- self.statements.width = value
-
- @property
- def draw_mode(self):
- return self._draw_mode
-
- @draw_mode.setter
- def draw_mode(self, value):
- self._draw_mode = value
- self.statements.draw_mode = value
-
- @property
- def fill_mode(self):
- return self._fill_mode
-
- @fill_mode.setter
- def fill_mode(self, value):
- self._fill_mode = value
- self.statements.fill_mode = value
-
- @property
- def pitch(self):
- return self.statements.pitch
-
- @pitch.setter
- def pitch(self, value):
- self.statements.pitch = value
-
- def write(self, filename=None, filetype=FT_RX274X):
- self.settings.notation = 'absolute'
- self.settings.zeros = 'trailing'
- filename = filename if filename is not None else self.filename
- with open(filename, 'w') as f:
- if filetype == self.FT_RX274X:
- write_gerber_header(f, self.settings)
- f.write(self.aperture.to_gerber(self.settings) + '\n')
- f.write(self.statements.to_gerber(self.settings) + '\n')
- f.write('M02*\n')
- else:
- tools = [ExcellonTool(self.settings, number=1, diameter=self.width)]
- write_excellon_header(f, self.settings, tools)
- f.write('T01\n')
- f.write(self.statements.to_excellon(self.settings) + '\n')
- f.write('M30\n')
-
-
- def to_inch(self):
- if self.units == 'metric':
- self.aperture.to_inch()
- self.statements.to_inch()
- self.pitch = inch(self.pitch)
- self.units = 'inch'
-
- def to_metric(self):
- if self.units == 'inch':
- self.aperture.to_metric()
- self.statements.to_metric()
- self.pitch = metric(self.pitch)
- self.units = 'metric'
-
- def offset(self, offset_x, offset_y):
- self.statements.offset(offset_x, offset_y)
-
- def rotate(self, angle, center=(0, 0)):
- self.statements.rotate(angle, center)
-
- def negate_polarity(self):
- self.statements.polarity = not self.statements.polarity
-
-def loads(data, filename=None):
- if sys.version_info.major == 2:
- data = unicode(data)
- stream = io.StringIO(data)
- dxf = dxfgrabber.read(stream)
- return DxfFile.from_dxf(dxf)
diff --git a/gerbonara/gerber/panelize/dxf_path.py b/gerbonara/gerber/panelize/dxf_path.py
deleted file mode 100644
index 201dcff..0000000
--- a/gerbonara/gerber/panelize/dxf_path.py
+++ /dev/null
@@ -1,412 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>
-
-from ..utils import inch, metric, write_gerber_value
-from ..cam import FileSettings
-from .utility import is_equal_point, is_equal_value, normalize_vec2d, dot_vec2d
-from .excellon import CoordinateStmtEx
-
-class DxfPath(object):
- def __init__(self, statements, error_range=0):
- self.statements = statements
- self.error_range = error_range
- self.bounding_box = statements[0].bounding_box
- self.containers = []
- for statement in statements[1:]:
- self._merge_bounding_box(statement.bounding_box)
-
- @property
- def start(self):
- return self.statements[0].start
-
- @property
- def end(self):
- return self.statements[-1].end
-
- @property
- def is_closed(self):
- if len(self.statements) == 1:
- return self.statements[0].is_closed
- else:
- return is_equal_point(self.start, self.end, self.error_range)
-
- def is_equal_to(self, target, error_range=0):
- if not isinstance(target, DxfPath):
- return False
- if len(self.statements) != len(target.statements):
- return False
- if is_equal_point(self.start, target.start, error_range) and \
- is_equal_point(self.end, target.end, error_range):
- for i in range(0, len(self.statements)):
- if not self.statements[i].is_equal_to(target.statements[i], error_range):
- return False
- return True
- elif is_equal_point(self.start, target.end, error_range) and \
- is_equal_point(self.end, target.start, error_range):
- for i in range(0, len(self.statements)):
- if not self.statements[i].is_equal_to(target.statements[-1 - i], error_range):
- return False
- return True
- return False
-
- def contain(self, target, error_range=0):
- for statement in self.statements:
- if statement.is_equal_to(target, error_range):
- return True
- else:
- return False
-
- def to_inch(self):
- self.error_range = inch(self.error_range)
- for statement in self.statements:
- statement.to_inch()
-
- def to_metric(self):
- self.error_range = metric(self.error_range)
- for statement in self.statements:
- statement.to_metric()
-
- def offset(self, offset_x, offset_y):
- for statement in self.statements:
- statement.offset(offset_x, offset_y)
-
- def rotate(self, angle, center=(0, 0)):
- for statement in self.statements:
- statement.rotate(angle, center)
-
- def reverse(self):
- rlist = []
- for statement in reversed(self.statements):
- statement.reverse()
- rlist.append(statement)
- self.statements = rlist
-
- def merge(self, element, error_range=0):
- if self.is_closed or element.is_closed:
- return False
- if not error_range:
- error_range = self.error_range
- if is_equal_point(self.end, element.start, error_range):
- return self._append_at_end(element, error_range)
- elif is_equal_point(self.end, element.end, error_range):
- element.reverse()
- return self._append_at_end(element, error_range)
- elif is_equal_point(self.start, element.end, error_range):
- return self._insert_on_top(element, error_range)
- elif is_equal_point(self.start, element.start, error_range):
- element.reverse()
- return self._insert_on_top(element, error_range)
- else:
- return False
-
- def _append_at_end(self, element, error_range=0):
- if isinstance(element, DxfPath):
- if self.is_equal_to(element, error_range):
- return False
- for i in range(0, min(len(self.statements), len(element.statements))):
- if not self.statements[-1 - i].is_equal_to(element.statements[i]):
- break
- for j in range(0, min(len(self.statements), len(element.statements))):
- if not self.statements[j].is_equal_to(element.statements[-1 - j]):
- break
- if i + j >= len(element.statements):
- return False
- mergee = list(element.statements)
- if i > 0:
- del mergee[0:i]
- del self.statements[-i]
- if j > 0:
- del mergee[-j]
- del self.statements[0:j]
- for statement in mergee:
- self._merge_bounding_box(statement.bounding_box)
- self.statements.extend(mergee)
- return True
- else:
- if self.statements[-1].is_equal_to(element, error_range) or \
- self.statements[0].is_equal_to(element, error_range):
- return False
- self._merge_bounding_box(element.bounding_box)
- self.statements.appen(element)
- return True
-
- def _insert_on_top(self, element, error_range=0):
- if isinstance(element, DxfPath):
- if self.is_equal_to(element, error_range):
- return False
- for i in range(0, min(len(self.statements), len(element.statements))):
- if not self.statements[-1 - i].is_equal_to(element.statements[i]):
- break
- for j in range(0, min(len(self.statements), len(element.statements))):
- if not self.statements[j].is_equal_to(element.statements[-1 - j]):
- break
- if i + j >= len(element.statements):
- return False
- mergee = list(element.statements)
- if i > 0:
- del mergee[0:i]
- del self.statements[-i]
- if j > 0:
- del mergee[-j]
- del self.statements[0:j]
- self.statements[0:0] = mergee
- return True
- else:
- if self.statements[-1].is_equal_to(element, error_range) or \
- self.statements[0].is_equal_to(element, error_range):
- return False
- self.statements.insert(0, element)
- return True
-
- def _merge_bounding_box(self, box):
- self.bounding_box = (min(self.bounding_box[0], box[0]),
- min(self.bounding_box[1], box[1]),
- max(self.bounding_box[2], box[2]),
- max(self.bounding_box[3], box[3]))
-
- def may_be_in_collision(self, path):
- if self.bounding_box[0] >= path.bounding_box[2] or \
- self.bounding_box[1] >= path.bounding_box[3] or \
- self.bounding_box[2] <= path.bounding_box[0] or \
- self.bounding_box[3] <= path.bounding_box[1]:
- return False
- else:
- return True
-
- def to_gerber(self, settings=FileSettings(), pitch=0, width=0):
- from .dxf import DxfArcStatement
- if pitch == 0:
- x0, y0 = self.statements[0].start
- gerber = 'G01*\nX{0}Y{1}D02*\nG75*'.format(
- write_gerber_value(x0, settings.format,
- settings.zero_suppression),
- write_gerber_value(y0, settings.format,
- settings.zero_suppression),
- )
-
- for statement in self.statements:
- x0, y0 = statement.start
- x1, y1 = statement.end
- if isinstance(statement, DxfArcStatement):
- xc, yc = statement.center
- gerber += '\nG{0}*\nX{1}Y{2}I{3}J{4}D01*'.format(
- '03' if statement.end_angle > statement.start_angle else '02',
- write_gerber_value(x1, settings.format,
- settings.zero_suppression),
- write_gerber_value(y1, settings.format,
- settings.zero_suppression),
- write_gerber_value(xc - x0, settings.format,
- settings.zero_suppression),
- write_gerber_value(yc - y0, settings.format,
- settings.zero_suppression)
- )
- else:
- gerber += '\nG01*\nX{0}Y{1}D01*'.format(
- write_gerber_value(x1, settings.format,
- settings.zero_suppression),
- write_gerber_value(y1, settings.format,
- settings.zero_suppression),
- )
- else:
- def ploter(x, y):
- return 'X{0}Y{1}D03*\n'.format(
- write_gerber_value(x, settings.format,
- settings.zero_suppression),
- write_gerber_value(y, settings.format,
- settings.zero_suppression),
- )
- gerber = self._plot_dots(pitch, width, ploter)
-
- return gerber
-
- def to_excellon(self, settings=FileSettings(), pitch=0, width=0):
- from .dxf import DxfArcStatement
- if pitch == 0:
- x0, y0 = self.statements[0].start
- excellon = 'G00{0}\nM15\n'.format(
- CoordinateStmtEx(x=x0, y=y0).to_excellon(settings))
-
- for statement in self.statements:
- x0, y0 = statement.start
- x1, y1 = statement.end
- if isinstance(statement, DxfArcStatement):
- i = statement.center[0] - x0
- j = statement.center[1] - y0
- excellon += '{0}{1}\n'.format(
- 'G03' if statement.end_angle > statement.start_angle else 'G02',
- CoordinateStmtEx(x=x1, y=y1, i=i, j=j).to_excellon(settings))
- else:
- excellon += 'G01{0}\n'.format(
- CoordinateStmtEx(x=x1, y=y1).to_excellon(settings))
-
- excellon += 'M16\nG05\n'
- else:
- def ploter(x, y):
- return CoordinateStmtEx(x=x, y=y).to_excellon(settings) + '\n'
- excellon = self._plot_dots(pitch, width, ploter)
-
- return excellon
-
- def _plot_dots(self, pitch, width, ploter):
- out = ''
- offset = 0
- for idx in range(0, len(self.statements)):
- statement = self.statements[idx]
- if offset < 0:
- offset += pitch
- for dot, offset in statement.dots(pitch, width, offset):
- if dot is None:
- break
- if offset > 0 and (statement.is_closed or idx != len(self.statements) - 1):
- break
- #if idx == len(self.statements) - 1 and statement.is_closed and offset > -pitch:
- # break
- out += ploter(dot[0], dot[1])
- return out
-
- def intersections_with_halfline(self, point_from, point_to, error_range=0):
- def calculator(statement):
- return statement.intersections_with_halfline(point_from, point_to, error_range)
- def validator(pt, statement, idx):
- if is_equal_point(pt, statement.end, error_range) and \
- not self._judge_cross(point_from, point_to, idx, error_range):
- return False
- return True
- return self._collect_intersections(calculator, validator, error_range)
-
- def intersections_with_arc(self, center, radius, angle_regions, error_range=0):
- def calculator(statement):
- return statement.intersections_with_arc(center, radius, angle_regions, error_range)
- return self._collect_intersections(calculator, None, error_range)
-
- def _collect_intersections(self, calculator, validator, error_range):
- allpts = []
- last = allpts
- for i in range(0, len(self.statements)):
- statement = self.statements[i]
- cur = calculator(statement)
- if cur:
- for pt in cur:
- for dest in allpts:
- if is_equal_point(pt, dest, error_range):
- break
- else:
- if validator is not None and not validator(pt, statement, i):
- continue
- allpts.append(pt)
- last = cur
- return allpts
-
- def _judge_cross(self, from_pt, to_pt, index, error_range):
- standard = normalize_vec2d((to_pt[0] - from_pt[0], to_pt[1] - from_pt[1]))
- normal = (standard[1], -standard[0])
- def statements():
- for i in range(index, len(self.statements)):
- yield self.statements[i]
- for i in range(0, index):
- yield self.statements[i]
- dot_standard = None
- for statement in statements():
- tstart = statement.start
- tend = statement.end
- target = normalize_vec2d((tend[0] - tstart[0], tend[1] - tstart[1]))
- dot= dot_vec2d(normal, target)
- if dot_standard is None:
- dot_standard = dot
- continue
- if is_equal_point(standard, target, error_range):
- continue
- return (dot_standard > 0 and dot > 0) or (dot_standard < 0 and dot < 0)
- raise Exception('inconsistensy is detected while cross judgement between paths')
-
-def generate_paths(statements, error_range=0):
- from .dxf import DxfPolylineStatement
-
- paths = []
- for statement in filter(lambda s: isinstance(s, DxfPolylineStatement), statements):
- units = [unit for unit in statement.disassemble()]
- paths.append(DxfPath(units, error_range))
-
- unique_statements = []
- redundant = 0
- for statement in filter(lambda s: not isinstance(s, DxfPolylineStatement), statements):
- for path in paths:
- if path.contain(statement):
- redundant += 1
- break
- else:
- for target in unique_statements:
- if statement.is_equal_to(target, error_range):
- redundant += 1
- break
- else:
- unique_statements.append(statement)
-
- paths.extend([DxfPath([s], error_range) for s in unique_statements])
-
- prev_paths_num = 0
- while prev_paths_num != len(paths):
- working = []
- for i in range(len(paths)):
- mergee = paths[i]
- for j in range(i + 1, len(paths)):
- target = paths[j]
- if target.merge(mergee, error_range):
- break
- else:
- working.append(mergee)
- prev_paths_num = len(paths)
- paths = working
-
- closed_path = list(filter(lambda p: p.is_closed, paths))
- open_path = list(filter(lambda p: not p.is_closed, paths))
- return (closed_path, open_path)
-
-def judge_containment(path1, path2, error_range=0):
- from .dxf import DxfArcStatement, DxfLineStatement
-
- nocontainment = (None, None)
- if not path1.may_be_in_collision(path2):
- return nocontainment
-
- def is_in_line_segment(point_from, point_to, point):
- dx = point_to[0] - point_from[0]
- ratio = (point[0] - point_from[0]) / dx if dx != 0 else \
- (point[1] - point_from[1]) / (point_to[1] - point_from[1])
- return ratio >= 0 and ratio <= 1
-
- def contain_in_path(statement, path):
- if isinstance(statement, DxfLineStatement):
- segment = (statement.start, statement.end)
- elif isinstance(statement, DxfArcStatement):
- if statement.start == statement.end:
- segment = (statement.start, statement.center)
- else:
- segment = (statement.start, statement.end)
- else:
- raise Exception('invalid dxf statement type')
- pts = path.intersections_with_halfline(segment[0], segment[1], error_range)
- if len(pts) % 2 == 0:
- return False
- for pt in pts:
- if is_in_line_segment(segment[0], segment[1], pt):
- return False
- if isinstance(statement, DxfArcStatement):
- pts = path.intersections_with_arc(
- statement.center, statement.radius, statement.angle_regions, error_range)
- if len(pts) > 0:
- return False
- return True
-
- if contain_in_path(path1.statements[0], path2):
- containment = [path1, path2]
- elif contain_in_path(path2.statements[0], path1):
- containment = [path2, path1]
- else:
- return nocontainment
- for i in range(1, len(containment[0].statements)):
- if not contain_in_path(containment[0].statements[i], containment[1]):
- return nocontainment
- return containment
diff --git a/gerbonara/gerber/panelize/gerber_statements.py b/gerbonara/gerber/panelize/gerber_statements.py
deleted file mode 100644
index 208660e..0000000
--- a/gerbonara/gerber/panelize/gerber_statements.py
+++ /dev/null
@@ -1,49 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>
-
-from ..gerber_statements import AMParamStmt, ADParamStmt
-from ..utils import inch, metric
-from .am_primitive import to_primitive_defs
-
-class ADParamStmtEx(ADParamStmt):
- GEOMETRIES = {
- 'C': [0,1],
- 'R': [0,1,2],
- 'O': [0,1,2],
- 'P': [0,3],
- }
-
- @classmethod
- def from_stmt(cls, stmt):
- modstr = ','.join([
- 'X'.join(['{0}'.format(x) for x in modifier])
- for modifier in stmt.modifiers])
- return cls(stmt.param, stmt.d, stmt.shape, modstr, stmt.units)
-
- def __init__(self, param, d, shape, modifiers, units):
- super(ADParamStmtEx, self).__init__(param, d, shape, modifiers)
- self.units = units
-
- def to_inch(self):
- if self.units == 'inch':
- return
- self.units = 'inch'
- if self.shape in self.GEOMETRIES:
- indices = self.GEOMETRIES[self.shape]
- self.modifiers = [tuple([
- inch(self.modifiers[0][i]) if i in indices else self.modifiers[0][i] \
- for i in range(len(self.modifiers[0]))
- ])]
-
- def to_metric(self):
- if self.units == 'metric':
- return
- self.units = 'metric'
- if self.shape in self.GEOMETRIES:
- indices = self.GEOMETRIES[self.shape]
- self.modifiers = [tuple([
- metric(self.modifiers[0][i]) if i in indices else self.modifiers[0][i] \
- for i in range(len(self.modifiers[0]))
- ])]
diff --git a/gerbonara/gerber/panelize/utility.py b/gerbonara/gerber/panelize/utility.py
deleted file mode 100644
index 0d57979..0000000
--- a/gerbonara/gerber/panelize/utility.py
+++ /dev/null
@@ -1,20 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>
-
-from math import cos, sin, pi, sqrt
-
-def is_equal_value(a, b, error_range=0):
- return (a - b) * (a - b) <= error_range * error_range
-
-def is_equal_point(a, b, error_range=0):
- return is_equal_value(a[0], b[0], error_range) and \
- is_equal_value(a[1], b[1], error_range)
-
-def normalize_vec2d(vec):
- length = sqrt(vec[0] * vec[0] + vec[1] * vec[1])
- return (vec[0] / length, vec[1] / length)
-
-def dot_vec2d(vec1, vec2):
- return vec1[0] * vec2[0] + vec1[1] * vec2[1]