summaryrefslogtreecommitdiff
path: root/gerbonara/apertures.py
diff options
context:
space:
mode:
Diffstat (limited to 'gerbonara/apertures.py')
-rw-r--r--gerbonara/apertures.py360
1 files changed, 360 insertions, 0 deletions
diff --git a/gerbonara/apertures.py b/gerbonara/apertures.py
new file mode 100644
index 0000000..ab62077
--- /dev/null
+++ b/gerbonara/apertures.py
@@ -0,0 +1,360 @@
+
+import math
+from dataclasses import dataclass, replace, field, fields, InitVar, KW_ONLY
+
+from .aperture_macros.parse import GenericMacros
+from .utils import MM, Inch
+
+from . import graphic_primitives as gp
+
+
+def _flash_hole(self, x, y, unit=None, polarity_dark=True):
+ if getattr(self, 'hole_rect_h', None) is not None:
+ return [*self.primitives(x, y, unit, polarity_dark),
+ gp.Rectangle((x, y),
+ (self.unit.convert_to(unit, self.hole_dia), self.unit.convert_to(unit, self.hole_rect_h)),
+ rotation=self.rotation, polarity_dark=(not polarity_dark))]
+ elif self.hole_dia is not None:
+ return [*self.primitives(x, y, unit, polarity_dark),
+ gp.Circle(x, y, self.unit.convert_to(unit, self.hole_dia/2), polarity_dark=(not polarity_dark))]
+ else:
+ return self.primitives(x, y, unit, polarity_dark)
+
+def strip_right(*args):
+ args = list(args)
+ while args and args[-1] is None:
+ args.pop()
+ return args
+
+def none_close(a, b):
+ if a is None and b is None:
+ return True
+ elif a is not None and b is not None:
+ return math.isclose(a, b)
+ else:
+ return False
+
+class Length:
+ def __init__(self, obj_type):
+ self.type = obj_type
+
+@dataclass
+class Aperture:
+ _ : KW_ONLY
+ unit : str = None
+ attrs : dict = field(default_factory=dict)
+ original_number : str = None
+
+ @property
+ def hole_shape(self):
+ if hasattr(self, 'hole_rect_h') and self.hole_rect_h is not None:
+ return 'rect'
+ else:
+ return 'circle'
+
+ def params(self, unit=None):
+ out = []
+ for f in fields(self):
+ if f.kw_only:
+ continue
+
+ val = getattr(self, f.name)
+ if isinstance(f.type, Length):
+ val = self.unit.convert_to(unit, val)
+ out.append(val)
+
+ return out
+
+ def flash(self, x, y, unit=None, polarity_dark=True):
+ return self.primitives(x, y, unit, polarity_dark)
+
+ def equivalent_width(self, unit=None):
+ raise ValueError('Non-circular aperture used in interpolation statement, line width is not properly defined.')
+
+ def to_gerber(self, settings=None):
+ # Hack: The standard aperture shapes C, R, O do not have a rotation parameter. To make this API easier to use,
+ # we emulate this parameter. Our circle, rectangle and oblong classes below have a rotation parameter. Only at
+ # export time during to_gerber, this parameter is evaluated.
+ unit = settings.unit if settings else None
+ actual_inst = self._rotated()
+ params = 'X'.join(f'{float(par):.4}' for par in actual_inst.params(unit) if par is not None)
+ if params:
+ return f'{actual_inst.gerber_shape_code},{params}'
+ else:
+ return actual_inst.gerber_shape_code
+
+ def __eq__(self, other):
+ # We need to choose some unit here.
+ return hasattr(other, 'to_gerber') and self.to_gerber(MM) == other.to_gerber(MM)
+
+ def _rotate_hole_90(self):
+ if self.hole_rect_h is None:
+ return {'hole_dia': self.hole_dia, 'hole_rect_h': None}
+ else:
+ return {'hole_dia': self.hole_rect_h, 'hole_rect_h': self.hole_dia}
+
+@dataclass(unsafe_hash=True)
+class ExcellonTool(Aperture):
+ human_readable_shape = 'drill'
+ diameter : Length(float)
+ plated : bool = None
+ depth_offset : Length(float) = 0
+
+ def primitives(self, x, y, unit=None, polarity_dark=True):
+ return [ gp.Circle(x, y, self.unit.convert_to(unit, self.diameter/2), polarity_dark=polarity_dark) ]
+
+ def to_xnc(self, settings):
+ z_off = 'Z' + settings.write_excellon_value(self.depth_offset, self.unit) if self.depth_offset is not None else ''
+ return 'C' + settings.write_excellon_value(self.diameter, self.unit) + z_off
+
+ def __eq__(self, other):
+ if not isinstance(other, ExcellonTool):
+ return False
+
+ if not self.plated == other.plated:
+ return False
+
+ if not none_close(self.depth_offset, self.unit(other.depth_offset, other.unit)):
+ return False
+
+ return none_close(self.diameter, self.unit(other.diameter, other.unit))
+
+ def __str__(self):
+ plated = '' if self.plated is None else (' plated' if self.plated else ' non-plated')
+ z_off = '' if self.depth_offset is None else f' z_offset={self.depth_offset}'
+ return f'<Excellon Tool d={self.diameter:.3f}{plated}{z_off} [{self.unit}]>'
+
+ def equivalent_width(self, unit=MM):
+ return unit(self.diameter, self.unit)
+
+ def dilated(self, offset, unit=MM):
+ offset = unit(offset, self.unit)
+ return replace(self, diameter=self.diameter+2*offset)
+
+ def _rotated(self):
+ return self
+
+ def to_macro(self):
+ return ApertureMacroInstance(GenericMacros.circle, self.params(unit=MM))
+
+ def params(self, unit=None):
+ return [self.unit.convert_to(unit, self.diameter)]
+
+
+@dataclass
+class CircleAperture(Aperture):
+ gerber_shape_code = 'C'
+ human_readable_shape = 'circle'
+ diameter : Length(float)
+ hole_dia : Length(float) = None
+ hole_rect_h : Length(float) = None
+ rotation : float = 0 # radians; for rectangular hole; see hack in Aperture.to_gerber
+
+ def primitives(self, x, y, unit=None, polarity_dark=True):
+ return [ gp.Circle(x, y, self.unit.convert_to(unit, self.diameter/2), polarity_dark=polarity_dark) ]
+
+ def __str__(self):
+ return f'<circle aperture d={self.diameter:.3} [{self.unit}]>'
+
+ flash = _flash_hole
+
+ def equivalent_width(self, unit=None):
+ return self.unit.convert_to(unit, self.diameter)
+
+ def dilated(self, offset, unit=MM):
+ offset = self.unit(offset, unit)
+ return replace(self, diameter=self.diameter+2*offset, hole_dia=None, hole_rect_h=None)
+
+ def _rotated(self):
+ if math.isclose(self.rotation % (2*math.pi), 0) or self.hole_rect_h is None:
+ return self
+ else:
+ return self.to_macro(self.rotation)
+
+ def to_macro(self):
+ return ApertureMacroInstance(GenericMacros.circle, self.params(unit=MM))
+
+ def params(self, unit=None):
+ return strip_right(
+ self.unit.convert_to(unit, self.diameter),
+ self.unit.convert_to(unit, self.hole_dia),
+ self.unit.convert_to(unit, self.hole_rect_h))
+
+
+@dataclass
+class RectangleAperture(Aperture):
+ gerber_shape_code = 'R'
+ human_readable_shape = 'rect'
+ w : Length(float)
+ h : Length(float)
+ hole_dia : Length(float) = None
+ hole_rect_h : Length(float) = None
+ rotation : float = 0 # radians
+
+ def primitives(self, x, y, unit=None, polarity_dark=True):
+ return [ gp.Rectangle(x, y, self.unit.convert_to(unit, self.w), self.unit.convert_to(unit, self.h),
+ rotation=self.rotation, polarity_dark=polarity_dark) ]
+
+ def __str__(self):
+ return f'<rect aperture {self.w:.3}x{self.h:.3} [{self.unit}]>'
+
+ flash = _flash_hole
+
+ def equivalent_width(self, unit=None):
+ return self.unit.convert_to(unit, math.sqrt(self.w**2 + self.h**2))
+
+ def dilated(self, offset, unit=MM):
+ offset = self.unit(offset, unit)
+ return replace(self, w=self.w+2*offset, h=self.h+2*offset, hole_dia=None, hole_rect_h=None)
+
+ def _rotated(self):
+ if math.isclose(self.rotation % math.pi, 0):
+ return self
+ elif math.isclose(self.rotation % math.pi, math.pi/2):
+ return replace(self, w=self.h, h=self.w, **self._rotate_hole_90(), rotation=0)
+ else: # odd angle
+ return self.to_macro()
+
+ def to_macro(self):
+ return ApertureMacroInstance(GenericMacros.rect,
+ [MM(self.w, self.unit),
+ MM(self.h, self.unit),
+ MM(self.hole_dia, self.unit) or 0,
+ MM(self.hole_rect_h, self.unit) or 0,
+ self.rotation])
+
+ def params(self, unit=None):
+ return strip_right(
+ self.unit.convert_to(unit, self.w),
+ self.unit.convert_to(unit, self.h),
+ self.unit.convert_to(unit, self.hole_dia),
+ self.unit.convert_to(unit, self.hole_rect_h))
+
+
+@dataclass
+class ObroundAperture(Aperture):
+ gerber_shape_code = 'O'
+ human_readable_shape = 'obround'
+ w : Length(float)
+ h : Length(float)
+ hole_dia : Length(float) = None
+ hole_rect_h : Length(float) = None
+ rotation : float = 0
+
+ def primitives(self, x, y, unit=None, polarity_dark=True):
+ return [ gp.Obround(x, y, self.unit.convert_to(unit, self.w), self.unit.convert_to(unit, self.h),
+ rotation=self.rotation, polarity_dark=polarity_dark) ]
+
+ def __str__(self):
+ return f'<obround aperture {self.w:.3}x{self.h:.3} [{self.unit}]>'
+
+ flash = _flash_hole
+
+ def dilated(self, offset, unit=MM):
+ offset = self.unit(offset, unit)
+ return replace(self, w=self.w+2*offset, h=self.h+2*offset, hole_dia=None, hole_rect_h=None)
+
+ def _rotated(self):
+ if math.isclose(self.rotation % math.pi, 0):
+ return self
+ elif math.isclose(self.rotation % math.pi, math.pi/2):
+ return replace(self, w=self.h, h=self.w, **self._rotate_hole_90(), rotation=0)
+ else:
+ return self.to_macro()
+
+ def to_macro(self):
+ # generic macro only supports w > h so flip x/y if h > w
+ inst = self if self.w > self.h else replace(self, w=self.h, h=self.w, **_rotate_hole_90(self), rotation=self.rotation-90)
+ return ApertureMacroInstance(GenericMacros.obround,
+ [MM(inst.w, self.unit),
+ MM(ints.h, self.unit),
+ MM(inst.hole_dia, self.unit),
+ MM(inst.hole_rect_h, self.unit),
+ inst.rotation])
+
+ def params(self, unit=None):
+ return strip_right(
+ self.unit.convert_to(unit, self.w),
+ self.unit.convert_to(unit, self.h),
+ self.unit.convert_to(unit, self.hole_dia),
+ self.unit.convert_to(unit, self.hole_rect_h))
+
+
+@dataclass
+class PolygonAperture(Aperture):
+ gerber_shape_code = 'P'
+ diameter : Length(float)
+ n_vertices : int
+ rotation : float = 0
+ hole_dia : Length(float) = None
+
+ def __post_init__(self):
+ self.n_vertices = int(self.n_vertices)
+
+ def primitives(self, x, y, unit=None, polarity_dark=True):
+ return [ gp.RegularPolygon(x, y, self.unit.convert_to(unit, self.diameter)/2, self.n_vertices,
+ rotation=self.rotation, polarity_dark=polarity_dark) ]
+
+ def __str__(self):
+ return f'<{self.n_vertices}-gon aperture d={self.diameter:.3} [{self.unit}]>'
+
+ def dilated(self, offset, unit=MM):
+ offset = self.unit(offset, unit)
+ return replace(self, diameter=self.diameter+2*offset, hole_dia=None)
+
+ flash = _flash_hole
+
+ def _rotated(self):
+ return self
+
+ def to_macro(self):
+ return ApertureMacroInstance(GenericMacros.polygon, self.params(MM))
+
+ def params(self, unit=None):
+ rotation = self.rotation % (2*math.pi / self.n_vertices) if self.rotation is not None else None
+ if self.hole_dia is not None:
+ return self.unit.convert_to(unit, self.diameter), self.n_vertices, rotation, self.unit.convert_to(unit, self.hole_dia)
+ elif rotation is not None and not math.isclose(rotation, 0):
+ return self.unit.convert_to(unit, self.diameter), self.n_vertices, rotation
+ else:
+ return self.unit.convert_to(unit, self.diameter), self.n_vertices
+
+@dataclass
+class ApertureMacroInstance(Aperture):
+ macro : object
+ parameters : [float]
+ rotation : float = 0
+
+ @property
+ def gerber_shape_code(self):
+ return self.macro.name
+
+ def primitives(self, x, y, unit=None, polarity_dark=True):
+ out = list(self.macro.to_graphic_primitives(
+ offset=(x, y), rotation=self.rotation,
+ parameters=self.parameters, unit=unit, polarity_dark=polarity_dark))
+ return out
+
+ def dilated(self, offset, unit=MM):
+ return replace(self, macro=self.macro.dilated(offset, unit))
+
+ def _rotated(self):
+ if math.isclose(self.rotation % (2*math.pi), 0):
+ return self
+ else:
+ return self.to_macro()
+
+ def to_macro(self):
+ return replace(self, macro=self.macro.rotated(self.rotation), rotation=0)
+
+ def __eq__(self, other):
+ return hasattr(other, 'macro') and self.macro == other.macro and \
+ hasattr(other, 'params') and self.params == other.params and \
+ hasattr(other, 'rotation') and self.rotation == other.rotation
+
+ def params(self, unit=None):
+ # We ignore "unit" here as we convert the actual macro, not this instantiation.
+ # We do this because here we do not have information about which parameter has which physical units.
+ return tuple(self.parameters)
+
+