summaryrefslogtreecommitdiff
path: root/gerbonara/aperture_macros
diff options
context:
space:
mode:
Diffstat (limited to 'gerbonara/aperture_macros')
-rw-r--r--gerbonara/aperture_macros/expression.py211
-rw-r--r--gerbonara/aperture_macros/parse.py181
-rw-r--r--gerbonara/aperture_macros/primitive.py270
3 files changed, 662 insertions, 0 deletions
diff --git a/gerbonara/aperture_macros/expression.py b/gerbonara/aperture_macros/expression.py
new file mode 100644
index 0000000..0cf055a
--- /dev/null
+++ b/gerbonara/aperture_macros/expression.py
@@ -0,0 +1,211 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+# Copyright 2021 Jan Götte <gerbonara@jaseg.de>
+
+import operator
+import re
+import ast
+
+from ..utils import MM, Inch, MILLIMETERS_PER_INCH
+
+
+def expr(obj):
+ return obj if isinstance(obj, Expression) else ConstantExpression(obj)
+
+
+class Expression:
+ def optimized(self, variable_binding={}):
+ return self
+
+ def __str__(self):
+ return f'<{self.to_gerber()}>'
+
+ def __repr__(self):
+ return f'<E {self.to_gerber()}>'
+
+ def converted(self, unit):
+ return self
+
+ def calculate(self, variable_binding={}, unit=None):
+ expr = self.converted(unit).optimized(variable_binding)
+ if not isinstance(expr, ConstantExpression):
+ raise IndexError(f'Cannot fully resolve expression due to unresolved variables: {expr} with variables {variable_binding}')
+ return expr.value
+
+ def __add__(self, other):
+ return OperatorExpression(operator.add, self, expr(other)).optimized()
+
+ def __radd__(self, other):
+ return expr(other) + self
+
+ def __sub__(self, other):
+ return OperatorExpression(operator.sub, self, expr(other)).optimized()
+
+ def __rsub__(self, other):
+ return expr(other) - self
+
+ def __mul__(self, other):
+ return OperatorExpression(operator.mul, self, expr(other)).optimized()
+
+ def __rmul__(self, other):
+ return expr(other) * self
+
+ def __truediv__(self, other):
+ return OperatorExpression(operator.truediv, self, expr(other)).optimized()
+
+ def __rtruediv__(self, other):
+ return expr(other) / self
+
+ def __neg__(self):
+ return 0 - self
+
+ def __pos__(self):
+ return self
+
+class UnitExpression(Expression):
+ def __init__(self, expr, unit):
+ self._expr = expr
+ self.unit = unit
+
+ def to_gerber(self, unit=None):
+ return self.converted(unit).optimized().to_gerber()
+
+ def __eq__(self, other):
+ return type(other) == type(self) and \
+ self.unit == other.unit and\
+ self._expr == other._expr
+
+ def __str__(self):
+ return f'<{self._expr.to_gerber()} {self.unit}>'
+
+ def __repr__(self):
+ return f'<UE {self._expr.to_gerber()} {self.unit}>'
+
+ def converted(self, unit):
+ if self.unit is None or unit is None or self.unit == unit:
+ return self._expr
+
+ elif MM == unit:
+ return self._expr * MILLIMETERS_PER_INCH
+
+ elif Inch == unit:
+ return self._expr / MILLIMETERS_PER_INCH
+
+ else:
+ raise ValueError(f'invalid unit {unit}, must be "inch" or "mm".')
+
+ def __add__(self, other):
+ if not isinstance(other, UnitExpression):
+ raise ValueError('Unit mismatch: Can only add/subtract UnitExpression from UnitExpression, not scalar.')
+
+ if self.unit == other.unit or self.unit is None or other.unit is None:
+ return UnitExpression(self._expr + other._expr, self.unit)
+
+ if other.unit == 'mm': # -> and self.unit == 'inch'
+ return UnitExpression(self._expr + (other._expr / MILLIMETERS_PER_INCH), self.unit)
+ else: # other.unit == 'inch' and self.unit == 'mm'
+ return UnitExpression(self._expr + (other._expr * MILLIMETERS_PER_INCH), self.unit)
+
+ def __radd__(self, other):
+ # left hand side cannot have been an UnitExpression or __radd__ would not have been called
+ raise ValueError('Unit mismatch: Can only add/subtract UnitExpression from UnitExpression, not scalar.')
+
+ def __sub__(self, other):
+ return (self + (-other)).optimize()
+
+ def __rsub__(self, other):
+ # see __radd__ above
+ raise ValueError('Unit mismatch: Can only add/subtract UnitExpression from UnitExpression, not scalar.')
+
+ def __mul__(self, other):
+ return UnitExpression(self._expr * other, self.unit)
+
+ def __rmul__(self, other):
+ return UnitExpression(other * self._expr, self.unit)
+
+ def __truediv__(self, other):
+ return UnitExpression(self._expr / other, self.unit)
+
+ def __rtruediv__(self, other):
+ return UnitExpression(other / self._expr, self.unit)
+
+ def __neg__(self):
+ return UnitExpression(-self._expr, self.unit)
+
+ def __pos__(self):
+ return self
+
+
+class ConstantExpression(Expression):
+ def __init__(self, value):
+ self.value = value
+
+ def __float__(self):
+ return float(self.value)
+
+ def __eq__(self, other):
+ return type(self) == type(other) and self.value == other.value
+
+ def to_gerber(self, _unit=None):
+ return f'{self.value:.6f}'.rstrip('0').rstrip('.')
+
+
+class VariableExpression(Expression):
+ def __init__(self, number):
+ self.number = number
+
+ def optimized(self, variable_binding={}):
+ if self.number in variable_binding:
+ return ConstantExpression(variable_binding[self.number])
+ return self
+
+ def __eq__(self, other):
+ return type(self) == type(other) and \
+ self.number == other.number
+
+ def to_gerber(self, _unit=None):
+ return f'${self.number}'
+
+
+class OperatorExpression(Expression):
+ def __init__(self, op, l, r):
+ self.op = op
+ self.l = ConstantExpression(l) if isinstance(l, (int, float)) else l
+ self.r = ConstantExpression(r) if isinstance(r, (int, float)) else r
+
+ def __eq__(self, other):
+ return type(self) == type(other) and \
+ self.op == other.op and \
+ self.l == other.l and \
+ self.r == other.r
+
+ def optimized(self, variable_binding={}):
+ l = self.l.optimized(variable_binding)
+ r = self.r.optimized(variable_binding)
+
+ if self.op in (operator.add, operator.mul):
+ if id(r) < id(l):
+ l, r = r, l
+
+ if isinstance(l, ConstantExpression) and isinstance(r, ConstantExpression):
+ return ConstantExpression(self.op(float(l), float(r)))
+
+ return OperatorExpression(self.op, l, r)
+
+ def to_gerber(self, unit=None):
+ lval = self.l.to_gerber(unit)
+ rval = self.r.to_gerber(unit)
+
+ if isinstance(self.l, OperatorExpression):
+ lval = f'({lval})'
+ if isinstance(self.r, OperatorExpression):
+ rval = f'({rval})'
+
+ op = {operator.add: '+',
+ operator.sub: '-',
+ operator.mul: 'X',
+ operator.truediv: '/'} [self.op]
+
+ return f'{lval}{op}{rval}'
+
diff --git a/gerbonara/aperture_macros/parse.py b/gerbonara/aperture_macros/parse.py
new file mode 100644
index 0000000..0fa936f
--- /dev/null
+++ b/gerbonara/aperture_macros/parse.py
@@ -0,0 +1,181 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+# Copyright 2021 Jan Götte <gerbonara@jaseg.de>
+
+import operator
+import re
+import ast
+import copy
+import math
+
+from . import primitive as ap
+from .expression import *
+from ..utils import MM
+
+def rad_to_deg(x):
+ return (x / math.pi) * 180
+
+def _map_expression(node):
+ if isinstance(node, ast.Num):
+ return ConstantExpression(node.n)
+
+ elif isinstance(node, ast.BinOp):
+ op_map = {ast.Add: operator.add, ast.Sub: operator.sub, ast.Mult: operator.mul, ast.Div: operator.truediv}
+ return OperatorExpression(op_map[type(node.op)], _map_expression(node.left), _map_expression(node.right))
+
+ elif isinstance(node, ast.UnaryOp):
+ if type(node.op) == ast.UAdd:
+ return _map_expression(node.operand)
+ else:
+ return OperatorExpression(operator.sub, ConstantExpression(0), _map_expression(node.operand))
+
+ elif isinstance(node, ast.Name):
+ return VariableExpression(int(node.id[3:])) # node.id has format var[0-9]+
+
+ else:
+ raise SyntaxError('Invalid aperture macro expression')
+
+def _parse_expression(expr):
+ expr = expr.lower().replace('x', '*')
+ expr = re.sub(r'\$([0-9]+)', r'var\1', expr)
+ try:
+ parsed = ast.parse(expr, mode='eval').body
+ except SyntaxError as e:
+ raise SyntaxError('Invalid aperture macro expression') from e
+ return _map_expression(parsed)
+
+class ApertureMacro:
+ def __init__(self, name=None, primitives=None, variables=None):
+ self._name = name
+ self.comments = []
+ self.variables = variables or {}
+ self.primitives = primitives or []
+
+ @classmethod
+ def parse_macro(cls, name, body, unit):
+ macro = cls(name)
+
+ blocks = re.sub(r'\s', '', body).split('*')
+ for block in blocks:
+ if not (block := block.strip()): # empty block
+ continue
+
+ if block[0:1] == '0 ': # comment
+ macro.comments.append(Comment(block[2:]))
+
+ if block[0] == '$': # variable definition
+ name, expr = block.partition('=')
+ number = int(name[1:])
+ if number in macro.variables:
+ raise SyntaxError(f'Re-definition of aperture macro variable {number} inside macro')
+ macro.variables[number] = _parse_expression(expr)
+
+ else: # primitive
+ primitive, *args = block.split(',')
+ args = [ _parse_expression(arg) for arg in args ]
+ primitive = ap.PRIMITIVE_CLASSES[int(primitive)](unit=unit, args=args)
+ macro.primitives.append(primitive)
+
+ return macro
+
+ @property
+ def name(self):
+ if self._name is not None:
+ return self._name
+ else:
+ return f'gn_{hash(self)}'
+
+ @name.setter
+ def name(self, name):
+ self._name = name
+
+ def __str__(self):
+ return f'<Aperture macro {self.name}, variables {str(self.variables)}, primitives {self.primitives}>'
+
+ def __repr__(self):
+ return str(self)
+
+ def __eq__(self, other):
+ return hasattr(other, 'to_gerber') and self.to_gerber() == other.to_gerber()
+
+ def __hash__(self):
+ return hash(self.to_gerber())
+
+ def dilated(self, offset, unit=MM):
+ dup = copy.deepcopy(self)
+ new_primitives = []
+ for primitive in dup.primitives:
+ try:
+ if primitive.exposure.calculate():
+ primitive.dilate(offset, unit)
+ new_primitives.append(primitive)
+ except IndexError:
+ warnings.warn('Cannot dilate aperture macro primitive with exposure value computed from macro variable.')
+ pass
+ dup.primitives = new_primitives
+ return dup
+
+ def to_gerber(self, unit=None):
+ comments = [ c.to_gerber() for c in self.comments ]
+ variable_defs = [ f'${var.to_gerber(unit)}={expr}' for var, expr in self.variables.items() ]
+ primitive_defs = [ prim.to_gerber(unit) for prim in self.primitives ]
+ return '*\n'.join(comments + variable_defs + primitive_defs)
+
+ def to_graphic_primitives(self, offset, rotation, parameters : [float], unit=None, polarity_dark=True):
+ variables = dict(self.variables)
+ for number, value in enumerate(parameters, start=1):
+ if number in variables:
+ raise SyntaxError(f'Re-definition of aperture macro variable {i} through parameter {value}')
+ variables[number] = value
+
+ for primitive in self.primitives:
+ yield from primitive.to_graphic_primitives(offset, rotation, variables, unit, polarity_dark)
+
+ def rotated(self, angle):
+ dup = copy.deepcopy(self)
+ for primitive in dup.primitives:
+ # aperture macro primitives use degree counter-clockwise, our API uses radians clockwise
+ primitive.rotation -= rad_to_deg(angle)
+ return dup
+
+
+cons, var = ConstantExpression, VariableExpression
+deg_per_rad = 180 / math.pi
+
+class GenericMacros:
+
+ _generic_hole = lambda n: [
+ ap.Circle('mm', [0, var(n), 0, 0]),
+ ap.CenterLine('mm', [0, var(n), var(n+1), 0, 0, var(n+2) * -deg_per_rad])]
+
+ # NOTE: All generic macros have rotation values specified in **clockwise radians** like the rest of the user-facing
+ # API.
+ circle = ApertureMacro('GNC', [
+ ap.Circle('mm', [1, var(1), 0, 0, var(4) * -deg_per_rad]),
+ *_generic_hole(2)])
+
+ rect = ApertureMacro('GNR', [
+ ap.CenterLine('mm', [1, var(1), var(2), 0, 0, var(5) * -deg_per_rad]),
+ *_generic_hole(3) ])
+
+ # w must be larger than h
+ obround = ApertureMacro('GNO', [
+ ap.CenterLine('mm', [1, var(1), var(2), 0, 0, var(5) * -deg_per_rad]),
+ ap.Circle('mm', [1, var(2), +var(1)/2, 0, var(5) * -deg_per_rad]),
+ ap.Circle('mm', [1, var(2), -var(1)/2, 0, var(5) * -deg_per_rad]),
+ *_generic_hole(3) ])
+
+ polygon = ApertureMacro('GNP', [
+ ap.Polygon('mm', [1, var(2), 0, 0, var(1), var(3) * -deg_per_rad]),
+ ap.Circle('mm', [0, var(4), 0, 0])])
+
+
+if __name__ == '__main__':
+ import sys
+ #for line in sys.stdin:
+ #expr = _parse_expression(line.strip())
+ #print(expr, '->', expr.optimized())
+
+ for primitive in parse_macro(sys.stdin.read(), 'mm'):
+ print(primitive)
diff --git a/gerbonara/aperture_macros/primitive.py b/gerbonara/aperture_macros/primitive.py
new file mode 100644
index 0000000..8732520
--- /dev/null
+++ b/gerbonara/aperture_macros/primitive.py
@@ -0,0 +1,270 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+
+# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>
+# Copyright 2022 Jan Götte <gerbonara@jaseg.de>
+
+import warnings
+import contextlib
+import math
+
+from .expression import Expression, UnitExpression, ConstantExpression, expr
+
+from .. import graphic_primitives as gp
+
+
+def point_distance(a, b):
+ x1, y1 = a
+ x2, y2 = b
+ return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
+
+def deg_to_rad(a):
+ return (a / 180) * math.pi
+
+class Primitive:
+ def __init__(self, unit, args):
+ self.unit = unit
+
+ if len(args) > len(type(self).__annotations__):
+ raise ValueError(f'Too many arguments ({len(args)}) for aperture macro primitive {self.code} ({type(self)})')
+
+ for arg, (name, fieldtype) in zip(args, type(self).__annotations__.items()):
+ arg = expr(arg) # convert int/float to Expression object
+
+ if fieldtype == UnitExpression:
+ setattr(self, name, UnitExpression(arg, unit))
+ else:
+ setattr(self, name, arg)
+
+ for name in type(self).__annotations__:
+ if not hasattr(self, name):
+ raise ValueError(f'Too few arguments ({len(args)}) for aperture macro primitive {self.code} ({type(self)})')
+
+ def to_gerber(self, unit=None):
+ return f'{self.code},' + ','.join(
+ getattr(self, name).to_gerber(unit) for name in type(self).__annotations__)
+
+ def __str__(self):
+ attrs = ','.join(str(getattr(self, name)).strip('<>') for name in type(self).__annotations__)
+ return f'<{type(self).__name__} {attrs}>'
+
+ def __repr__(self):
+ return str(self)
+
+ class Calculator:
+ def __init__(self, instance, variable_binding={}, unit=None):
+ self.instance = instance
+ self.variable_binding = variable_binding
+ self.unit = unit
+
+ def __enter__(self):
+ return self
+
+ def __exit__(self, _type, _value, _traceback):
+ pass
+
+ def __getattr__(self, name):
+ return getattr(self.instance, name).calculate(self.variable_binding, self.unit)
+
+ def __call__(self, expr):
+ return expr.calculate(self.variable_binding, self.unit)
+
+
+class Circle(Primitive):
+ code = 1
+ exposure : Expression
+ diameter : UnitExpression
+ # center x/y
+ x : UnitExpression
+ y : UnitExpression
+ rotation : Expression = None
+
+ def __init__(self, unit, args):
+ super().__init__(unit, args)
+ if self.rotation is None:
+ self.rotation = ConstantExpression(0)
+
+ def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
+ with self.Calculator(self, variable_binding, unit) as calc:
+ x, y = gp.rotate_point(calc.x, calc.y, deg_to_rad(calc.rotation) + rotation, 0, 0)
+ x, y = x+offset[0], y+offset[1]
+ return [ gp.Circle(x, y, calc.diameter/2, polarity_dark=(bool(calc.exposure) == polarity_dark)) ]
+
+ def dilate(self, offset, unit):
+ self.diameter += UnitExpression(offset, unit)
+
+class VectorLine(Primitive):
+ code = 20
+ exposure : Expression
+ width : UnitExpression
+ start_x : UnitExpression
+ start_y : UnitExpression
+ end_x : UnitExpression
+ end_y : UnitExpression
+ rotation : Expression
+
+ def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
+ with self.Calculator(self, variable_binding, unit) as calc:
+ center_x = (calc.end_x + calc.start_x) / 2
+ center_y = (calc.end_y + calc.start_y) / 2
+ delta_x = calc.end_x - calc.start_x
+ delta_y = calc.end_y - calc.start_y
+ length = point_distance((calc.start_x, calc.start_y), (calc.end_x, calc.end_y))
+
+ center_x, center_y = center_x+offset[0], center_y+offset[1]
+ rotation += deg_to_rad(calc.rotation) + math.atan2(delta_y, delta_x)
+
+ return [ gp.Rectangle(center_x, center_y, length, calc.width, rotation=rotation,
+ polarity_dark=(bool(calc.exposure) == polarity_dark)) ]
+
+ def dilate(self, offset, unit):
+ self.width += UnitExpression(2*offset, unit)
+
+
+class CenterLine(Primitive):
+ code = 21
+ exposure : Expression
+ width : UnitExpression
+ height : UnitExpression
+ # center x/y
+ x : UnitExpression
+ y : UnitExpression
+ rotation : Expression
+
+ def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
+ with self.Calculator(self, variable_binding, unit) as calc:
+ rotation += deg_to_rad(calc.rotation)
+ x, y = gp.rotate_point(calc.x, calc.y, rotation, 0, 0)
+ x, y = x+offset[0], y+offset[1]
+ w, h = calc.width, calc.height
+
+ return [ gp.Rectangle(x, y, w, h, rotation, polarity_dark=(bool(calc.exposure) == polarity_dark)) ]
+
+ def dilate(self, offset, unit):
+ self.width += UnitExpression(2*offset, unit)
+
+
+class Polygon(Primitive):
+ code = 5
+ exposure : Expression
+ n_vertices : Expression
+ # center x/y
+ x : UnitExpression
+ y : UnitExpression
+ diameter : UnitExpression
+ rotation : Expression
+
+ def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
+ with self.Calculator(self, variable_binding, unit) as calc:
+ rotation += deg_to_rad(calc.rotation)
+ x, y = gp.rotate_point(calc.x, calc.y, rotation, 0, 0)
+ x, y = x+offset[0], y+offset[1]
+ return [ gp.RegularPolygon(calc.x, calc.y, calc.diameter/2, calc.n_vertices, rotation,
+ polarity_dark=(bool(calc.exposure) == polarity_dark)) ]
+
+ def dilate(self, offset, unit):
+ self.diameter += UnitExpression(2*offset, unit)
+
+
+class Thermal(Primitive):
+ code = 7
+ exposure : Expression
+ # center x/y
+ x : UnitExpression
+ y : UnitExpression
+ d_outer : UnitExpression
+ d_inner : UnitExpression
+ gap_w : UnitExpression
+ rotation : Expression
+
+ def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
+ with self.Calculator(self, variable_binding, unit) as calc:
+ rotation += deg_to_rad(calc.rotation)
+ x, y = gp.rotate_point(calc.x, calc.y, rotation, 0, 0)
+ x, y = x+offset[0], y+offset[1]
+
+ dark = (bool(calc.exposure) == polarity_dark)
+
+ return [
+ gp.Circle(x, y, calc.d_outer/2, polarity_dark=dark),
+ gp.Circle(x, y, calc.d_inner/2, polarity_dark=not dark),
+ gp.Rectangle(x, y, d_outer, gap_w, rotation=rotation, polarity_dark=not dark),
+ gp.Rectangle(x, y, gap_w, d_outer, rotation=rotation, polarity_dark=not dark),
+ ]
+
+ def dilate(self, offset, unit):
+ # I'd rather print a warning and produce graphically slightly incorrect output in these few cases here than
+ # producing macros that may evaluate to primitives with negative values.
+ warnings.warn('Attempted dilation of macro aperture thermal primitive. This is not supported.')
+
+
+class Outline(Primitive):
+ code = 4
+
+ def __init__(self, unit, args):
+ if len(args) < 11:
+ raise ValueError(f'Invalid aperture macro outline primitive, not enough parameters ({len(args)}).')
+ if len(args) > 5004:
+ raise ValueError(f'Invalid aperture macro outline primitive, too many points ({len(args)//2-2}).')
+
+ self.exposure = args.pop(0)
+
+ # length arg must not contain variables (that would not make sense)
+ length_arg = args.pop(0).calculate()
+
+ if length_arg != len(args)//2-1:
+ raise ValueError(f'Invalid aperture macro outline primitive, given size {length_arg} does not match length of coordinate list({len(args)//2-1}).')
+
+ if len(args) % 2 == 1:
+ self.rotation = args.pop()
+ else:
+ self.rotation = ConstantExpression(0.0)
+
+ if args[0] != args[-2] or args[1] != args[-1]:
+ raise ValueError(f'Invalid aperture macro outline primitive, polygon is not closed {args[2:4], args[-3:-1]}')
+
+ self.coords = [(UnitExpression(x, unit), UnitExpression(y, unit)) for x, y in zip(args[0::2], args[1::2])]
+
+ def __str__(self):
+ return f'<Outline {len(self.coords)} points>'
+
+ def to_gerber(self, unit=None):
+ coords = ','.join(coord.to_gerber(unit) for xy in self.coords for coord in xy)
+ return f'{self.code},{self.exposure.to_gerber()},{len(self.coords)-1},{coords},{self.rotation.to_gerber()}'
+
+ def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
+ with self.Calculator(self, variable_binding, unit) as calc:
+ rotation += deg_to_rad(calc.rotation)
+ bound_coords = [ gp.rotate_point(calc(x), calc(y), rotation, 0, 0) for x, y in self.coords ]
+ bound_coords = [ (x+offset[0], y+offset[1]) for x, y in bound_coords ]
+ bound_radii = [None] * len(bound_coords)
+ return [gp.ArcPoly(bound_coords, bound_radii, polarity_dark=(bool(calc.exposure) == polarity_dark))]
+
+ def dilate(self, offset, unit):
+ # we would need a whole polygon offset/clipping library here
+ warnings.warn('Attempted dilation of macro aperture outline primitive. This is not supported.')
+
+
+class Comment:
+ code = 0
+
+ def __init__(self, comment):
+ self.comment = comment
+
+ def to_gerber(self, unit=None):
+ return f'0 {self.comment}'
+
+PRIMITIVE_CLASSES = {
+ **{cls.code: cls for cls in [
+ Comment,
+ Circle,
+ VectorLine,
+ CenterLine,
+ Outline,
+ Polygon,
+ Thermal,
+ ]},
+ # alternative codes
+ 2: VectorLine,
+}
+