diff options
Diffstat (limited to 'gerber/render')
-rw-r--r-- | gerber/render/cairo_backend.py | 153 | ||||
-rw-r--r-- | gerber/render/excellon_backend.py | 189 | ||||
-rw-r--r-- | gerber/render/render.py | 48 | ||||
-rw-r--r-- | gerber/render/rs274x_backend.py | 494 |
4 files changed, 870 insertions, 14 deletions
diff --git a/gerber/render/cairo_backend.py b/gerber/render/cairo_backend.py index d7026b8..31a1e77 100644 --- a/gerber/render/cairo_backend.py +++ b/gerber/render/cairo_backend.py @@ -12,14 +12,19 @@ # Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+
# See the License for the specific language governing permissions and
# limitations under the License.
+try:
+ import cairo
+except ImportError:
+ import cairocffi as cairo
-import cairocffi as cairo
-import os
+from operator import mul
import tempfile
import copy
+import os
from .render import GerberContext, RenderSettings
from .theme import THEMES
@@ -105,10 +110,13 @@ class GerberCairoContext(GerberContext): verbose=verbose)
self.dump(filename, verbose)
- def dump(self, filename, verbose=False):
+ def dump(self, filename=None, verbose=False):
""" Save image as `filename`
"""
- is_svg = os.path.splitext(filename.lower())[1] == '.svg'
+ try:
+ is_svg = os.path.splitext(filename.lower())[1] == '.svg'
+ except:
+ is_svg = False
if verbose:
print('[Render]: Writing image to {}'.format(filename))
if is_svg:
@@ -119,7 +127,7 @@ class GerberCairoContext(GerberContext): f.write(self.surface_buffer.read())
f.flush()
else:
- self.surface.write_to_png(filename)
+ return self.surface.write_to_png(filename)
def dump_str(self):
""" Return a byte-string containing the rendered image.
@@ -154,7 +162,7 @@ class GerberCairoContext(GerberContext): for prim in layer.primitives:
self.render(prim)
# Add layer to image
- self._paint(settings.color, settings.alpha)
+ self._flatten(settings.color, settings.alpha)
def _render_line(self, line, color):
start = [pos * scale for pos, scale in zip(line.start, self.scale)]
@@ -184,10 +192,17 @@ class GerberCairoContext(GerberContext): radius = self.scale[0] * arc.radius
angle1 = arc.start_angle
angle2 = arc.end_angle
- width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
+ if angle1 == angle2 and arc.quadrant_mode != 'single-quadrant':
+ # Make the angles slightly different otherwise Cario will draw nothing
+ angle2 -= 0.000000001
+ if isinstance(arc.aperture, Circle):
+ width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
+ else:
+ width = max(arc.aperture.width, arc.aperture.height, 0.001)
+
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if arc.level_polarity == 'dark' and
- (not self.invert) else cairo.OPERATOR_CLEAR)
+ (not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(width * self.scale[0])
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
self.ctx.move_to(*start) # You actually have to do this...
@@ -225,12 +240,23 @@ class GerberCairoContext(GerberContext): center = self.scale_point(circle.position)
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if circle.level_polarity == 'dark' and
- (not self.invert) else cairo.OPERATOR_CLEAR)
+ (not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(0)
self.ctx.arc(*center, radius=(circle.radius * self.scale[0]), angle1=0,
angle2=(2 * math.pi))
self.ctx.fill()
+ if circle.hole_diameter > 0:
+ # Render the center clear
+
+ self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
+ self.ctx.set_operator(cairo.OPERATOR_CLEAR)
+ self.ctx.arc(center[0], center[1],
+ radius=circle.hole_radius * self.scale[0], angle1=0,
+ angle2=2 * math.pi)
+ self.ctx.fill()
+
+
def _render_rectangle(self, rectangle, color):
lower_left = self.scale_point(rectangle.lower_left)
width, height = tuple([abs(coord) for coord in
@@ -239,19 +265,126 @@ class GerberCairoContext(GerberContext): self.ctx.set_operator(cairo.OPERATOR_SOURCE
if rectangle.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
+
+ if rectangle.rotation != 0:
+ self.ctx.save()
+
+ center = map(mul, rectangle.position, self.scale)
+ matrix = cairo.Matrix()
+ matrix.translate(center[0], center[1])
+ # For drawing, we already handles the translation
+ lower_left[0] = lower_left[0] - center[0]
+ lower_left[1] = lower_left[1] - center[1]
+ matrix.rotate(rectangle.rotation)
+ self.ctx.transform(matrix)
+
+ if rectangle.hole_diameter > 0:
+ self.ctx.push_group()
+
self.ctx.set_line_width(0)
self.ctx.rectangle(*lower_left, width=width, height=height)
self.ctx.fill()
+ if rectangle.hole_diameter > 0:
+ # Render the center clear
+ self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
+ self.ctx.set_operator(cairo.OPERATOR_CLEAR
+ if rectangle.level_polarity == 'dark'
+ and (not self.invert)
+ else cairo.OPERATOR_SOURCE)
+ center = map(mul, rectangle.position, self.scale)
+ self.ctx.arc(center[0], center[1],
+ radius=rectangle.hole_radius * self.scale[0], angle1=0,
+ angle2=2 * math.pi)
+ self.ctx.fill()
+
+ if rectangle.rotation != 0:
+ self.ctx.restore()
+
def _render_obround(self, obround, color):
+ if obround.hole_diameter > 0:
+ self.ctx.push_group()
+
self._render_circle(obround.subshapes['circle1'], color)
self._render_circle(obround.subshapes['circle2'], color)
self._render_rectangle(obround.subshapes['rectangle'], color)
+ if obround.hole_diameter > 0:
+ # Render the center clear
+ self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
+ self.ctx.set_operator(cairo.OPERATOR_CLEAR)
+ center = map(mul, obround.position, self.scale)
+ self.ctx.arc(center[0], center[1],
+ radius=obround.hole_radius * self.scale[0], angle1=0,
+ angle2=2 * math.pi)
+ self.ctx.fill()
+
+ self.ctx.pop_group_to_source()
+ self.ctx.paint_with_alpha(1)
+
+
+ def _render_polygon(self, polygon, color):
+
+ # TODO Ths does not handle rotation of a polygon
+ self.ctx.set_operator(cairo.OPERATOR_SOURCE
+ if polygon.level_polarity == 'dark' and
+ (not self.invert) else cairo.OPERATOR_CLEAR)
+ if polygon.hole_radius > 0:
+ self.ctx.push_group()
+
+ vertices = polygon.vertices
+
+ self.ctx.set_line_width(0)
+ self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
+
+ # Start from before the end so it is easy to iterate and make sure it is closed
+ self.ctx.move_to(*map(mul, vertices[-1], self.scale))
+ for v in vertices:
+ self.ctx.line_to(*map(mul, v, self.scale))
+
+ self.ctx.fill()
+
+ if polygon.hole_radius > 0:
+ # Render the center clear
+ center = tuple(map(mul, polygon.position, self.scale))
+ self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
+ self.ctx.set_operator(cairo.OPERATOR_CLEAR
+ if polygon.level_polarity == 'dark'
+ and (not self.invert)
+ else cairo.OPERATOR_SOURCE)
+ self.ctx.set_line_width(0)
+ self.ctx.arc(center[0],
+ center[1],
+ polygon.hole_radius * self.scale[0], 0, 2 * math.pi)
+ self.ctx.fill()
+
def _render_drill(self, circle, color=None):
color = color if color is not None else self.drill_color
self._render_circle(circle, color)
+ def _render_slot(self, slot, color):
+ start = map(mul, slot.start, self.scale)
+ end = map(mul, slot.end, self.scale)
+
+ width = slot.diameter
+
+ self.ctx.set_operator(cairo.OPERATOR_SOURCE
+ if slot.level_polarity == 'dark' and
+ (not self.invert) else cairo.OPERATOR_CLEAR)
+
+ self.ctx.set_line_width(width * self.scale[0])
+ self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
+ self.ctx.move_to(*start)
+ self.ctx.line_to(*end)
+ self.ctx.stroke()
+
+ def _render_amgroup(self, amgroup, color):
+ self.ctx.push_group()
+ for primitive in amgroup.primitives:
+ self.render(primitive)
+ self.ctx.pop_group_to_source()
+ self.ctx.paint_with_alpha(1)
+
def _render_test_record(self, primitive, color):
position = [pos + origin for pos, origin in
zip(primitive.position, self.origin_in_inch)]
@@ -285,7 +418,7 @@ class GerberCairoContext(GerberContext): self.active_layer = layer
self.active_matrix = matrix
- def _paint(self, color=None, alpha=None):
+ def _flatten(self, color=None, alpha=None):
color = color if color is not None else self.color
alpha = alpha if alpha is not None else self.alpha
ptn = cairo.SurfacePattern(self.active_layer)
diff --git a/gerber/render/excellon_backend.py b/gerber/render/excellon_backend.py new file mode 100644 index 0000000..da5b22b --- /dev/null +++ b/gerber/render/excellon_backend.py @@ -0,0 +1,189 @@ + +from .render import GerberContext +from ..excellon import DrillSlot +from ..excellon_statements import * + +class ExcellonContext(GerberContext): + + MODE_DRILL = 1 + MODE_SLOT =2 + + def __init__(self, settings): + GerberContext.__init__(self) + + # Statements that we write + self.comments = [] + self.header = [] + self.tool_def = [] + self.body_start = [RewindStopStmt()] + self.body = [] + self.start = [HeaderBeginStmt()] + + # Current tool and position + self.handled_tools = set() + self.cur_tool = None + self.drill_mode = ExcellonContext.MODE_DRILL + self.drill_down = False + self._pos = (None, None) + + self.settings = settings + + self._start_header() + self._start_comments() + + def _start_header(self): + """Create the header from the settings""" + + self.header.append(UnitStmt.from_settings(self.settings)) + + if self.settings.notation == 'incremental': + raise NotImplementedError('Incremental mode is not implemented') + else: + self.body.append(AbsoluteModeStmt()) + + def _start_comments(self): + + # Write the digits used - this isn't valid Excellon statement, so we write as a comment + self.comments.append(CommentStmt('FILE_FORMAT=%d:%d' % (self.settings.format[0], self.settings.format[1]))) + + def _get_end(self): + """How we end depends on our mode""" + + end = [] + + if self.drill_down: + end.append(RetractWithClampingStmt()) + end.append(RetractWithoutClampingStmt()) + + end.append(EndOfProgramStmt()) + + return end + + @property + def statements(self): + return self.start + self.comments + self.header + self.body_start + self.body + self._get_end() + + def set_bounds(self, bounds): + pass + + def _paint_background(self): + pass + + def _render_line(self, line, color): + raise ValueError('Invalid Excellon object') + def _render_arc(self, arc, color): + raise ValueError('Invalid Excellon object') + + def _render_region(self, region, color): + raise ValueError('Invalid Excellon object') + + def _render_level_polarity(self, region): + raise ValueError('Invalid Excellon object') + + def _render_circle(self, circle, color): + raise ValueError('Invalid Excellon object') + + def _render_rectangle(self, rectangle, color): + raise ValueError('Invalid Excellon object') + + def _render_obround(self, obround, color): + raise ValueError('Invalid Excellon object') + + def _render_polygon(self, polygon, color): + raise ValueError('Invalid Excellon object') + + def _simplify_point(self, point): + return (point[0] if point[0] != self._pos[0] else None, point[1] if point[1] != self._pos[1] else None) + + def _render_drill(self, drill, color): + + if self.drill_mode != ExcellonContext.MODE_DRILL: + self._start_drill_mode() + + tool = drill.hit.tool + if not tool in self.handled_tools: + self.handled_tools.add(tool) + self.header.append(ExcellonTool.from_tool(tool)) + + if tool != self.cur_tool: + self.body.append(ToolSelectionStmt(tool.number)) + self.cur_tool = tool + + point = self._simplify_point(drill.position) + self._pos = drill.position + self.body.append(CoordinateStmt.from_point(point)) + + def _start_drill_mode(self): + """ + If we are not in drill mode, then end the ROUT so we can do basic drilling + """ + + if self.drill_mode == ExcellonContext.MODE_SLOT: + + # Make sure we are retracted before changing modes + last_cmd = self.body[-1] + if self.drill_down: + self.body.append(RetractWithClampingStmt()) + self.body.append(RetractWithoutClampingStmt()) + self.drill_down = False + + # Switch to drill mode + self.body.append(DrillModeStmt()) + self.drill_mode = ExcellonContext.MODE_DRILL + + else: + raise ValueError('Should be in slot mode') + + def _render_slot(self, slot, color): + + # Set the tool first, before we might go into drill mode + tool = slot.hit.tool + if not tool in self.handled_tools: + self.handled_tools.add(tool) + self.header.append(ExcellonTool.from_tool(tool)) + + if tool != self.cur_tool: + self.body.append(ToolSelectionStmt(tool.number)) + self.cur_tool = tool + + # Two types of drilling - normal drill and slots + if slot.hit.slot_type == DrillSlot.TYPE_ROUT: + + # For ROUT, setting the mode is part of the actual command. + + # Are we in the right position? + if slot.start != self._pos: + if self.drill_down: + # We need to move into the right position, so retract + self.body.append(RetractWithClampingStmt()) + self.drill_down = False + + # Move to the right spot + point = self._simplify_point(slot.start) + self._pos = slot.start + self.body.append(CoordinateStmt.from_point(point, mode="ROUT")) + + # Now we are in the right spot, so drill down + if not self.drill_down: + self.body.append(ZAxisRoutPositionStmt()) + self.drill_down = True + + # Do a linear move from our current position to the end position + point = self._simplify_point(slot.end) + self._pos = slot.end + self.body.append(CoordinateStmt.from_point(point, mode="LINEAR")) + + self.drill_mode = ExcellonContext.MODE_SLOT + + else: + # This is a G85 slot, so do this in normally drilling mode + if self.drill_mode != ExcellonContext.MODE_DRILL: + self._start_drill_mode() + + # Slots don't use simplified points + self._pos = slot.end + self.body.append(SlotStmt.from_points(slot.start, slot.end)) + + def _render_inverted_layer(self): + pass +
\ No newline at end of file diff --git a/gerber/render/render.py b/gerber/render/render.py index 724aaea..79f43d6 100644 --- a/gerber/render/render.py +++ b/gerber/render/render.py @@ -65,7 +65,7 @@ class GerberContext(object): self._background_color = (0.0, 0.0, 0.0) self._drill_color = (0.0, 0.0, 0.0) self._alpha = 1.0 - self.invert = False + self._invert = False self.ctx = None @property @@ -127,7 +127,20 @@ class GerberContext(object): raise ValueError('Alpha must be between 0.0 and 1.0') self._alpha = alpha + @property + def invert(self): + return self._invert + + @invert.setter + def invert(self, invert): + self._invert = invert + def render(self, primitive): + if not primitive: + return + + self._pre_render_primitive(primitive) + color = self.color if isinstance(primitive, Line): self._render_line(primitive, color) @@ -144,11 +157,32 @@ class GerberContext(object): elif isinstance(primitive, Polygon): self._render_polygon(primitive, color) elif isinstance(primitive, Drill): - self._render_drill(primitive, color) + self._render_drill(primitive, self.color) + elif isinstance(primitive, Slot): + self._render_slot(primitive, self.color) + elif isinstance(primitive, AMGroup): + self._render_amgroup(primitive, color) + elif isinstance(primitive, Outline): + self._render_region(primitive, color) elif isinstance(primitive, TestRecord): self._render_test_record(primitive, color) - else: - return + + self._post_render_primitive(primitive) + + def _pre_render_primitive(self, primitive): + """ + Called before rendering a primitive. Use the callback to perform some action before rendering + a primitive, for example adding a comment. + """ + return + + def _post_render_primitive(self, primitive): + """ + Called after rendering a primitive. Use the callback to perform some action after rendering + a primitive + """ + return + def _render_line(self, primitive, color): pass @@ -174,6 +208,12 @@ class GerberContext(object): def _render_drill(self, primitive, color): pass + def _render_slot(self, primitive, color): + pass + + def _render_amgroup(self, primitive, color): + pass + def _render_test_record(self, primitive, color): pass diff --git a/gerber/render/rs274x_backend.py b/gerber/render/rs274x_backend.py new file mode 100644 index 0000000..13e871c --- /dev/null +++ b/gerber/render/rs274x_backend.py @@ -0,0 +1,494 @@ +"""Renders an in-memory Gerber file to statements which can be written to a string +""" +from copy import deepcopy + +try: + from cStringIO import StringIO +except(ImportError): + from io import StringIO + +from .render import GerberContext +from ..am_statements import * +from ..gerber_statements import * +from ..primitives import AMGroup, Arc, Circle, Line, Obround, Outline, Polygon, Rectangle + + +class AMGroupContext(object): + '''A special renderer to generate aperature macros from an AMGroup''' + + def __init__(self): + self.statements = [] + + def render(self, amgroup, name): + + if amgroup.stmt: + # We know the statement it was generated from, so use that to create the AMParamStmt + # It will give a much better result + + stmt = deepcopy(amgroup.stmt) + stmt.name = name + + return stmt + + else: + # Clone ourselves, then offset by the psotion so that + # our render doesn't have to consider offset. Just makes things simpler + nooffset_group = deepcopy(amgroup) + nooffset_group.position = (0, 0) + + # Now draw the shapes + for primitive in nooffset_group.primitives: + if isinstance(primitive, Outline): + self._render_outline(primitive) + elif isinstance(primitive, Circle): + self._render_circle(primitive) + elif isinstance(primitive, Rectangle): + self._render_rectangle(primitive) + elif isinstance(primitive, Line): + self._render_line(primitive) + elif isinstance(primitive, Polygon): + self._render_polygon(primitive) + else: + raise ValueError('amgroup') + + statement = AMParamStmt('AM', name, self._statements_to_string()) + return statement + + def _statements_to_string(self): + macro = '' + + for statement in self.statements: + macro += statement.to_gerber() + + return macro + + def _render_circle(self, circle): + self.statements.append(AMCirclePrimitive.from_primitive(circle)) + + def _render_rectangle(self, rectangle): + self.statements.append(AMCenterLinePrimitive.from_primitive(rectangle)) + + def _render_line(self, line): + self.statements.append(AMVectorLinePrimitive.from_primitive(line)) + + def _render_outline(self, outline): + self.statements.append(AMOutlinePrimitive.from_primitive(outline)) + + def _render_polygon(self, polygon): + self.statements.append(AMPolygonPrimitive.from_primitive(polygon)) + + def _render_thermal(self, thermal): + pass + + +class Rs274xContext(GerberContext): + + def __init__(self, settings): + GerberContext.__init__(self) + self.comments = [] + self.header = [] + self.body = [] + self.end = [EofStmt()] + + # Current values so we know if we have to execute + # moves, levey changes before anything else + self._level_polarity = None + self._pos = (None, None) + self._func = None + self._quadrant_mode = None + self._dcode = None + + # Primarily for testing and comarison to files, should we write + # flashes as a single statement or a move plus flash? Set to true + # to do in a single statement. Normally this can be false + self.condensed_flash = True + + # When closing a region, force a D02 staement to close a region. + # This is normally not necessary because regions are closed with a G37 + # staement, but this will add an extra statement for doubly close + # the region + self.explicit_region_move_end = False + + self._next_dcode = 10 + self._rects = {} + self._circles = {} + self._obrounds = {} + self._polygons = {} + self._macros = {} + + self._i_none = 0 + self._j_none = 0 + + self.settings = settings + + self._start_header(settings) + + def _start_header(self, settings): + self.header.append(FSParamStmt.from_settings(settings)) + self.header.append(MOParamStmt.from_units(settings.units)) + + def _simplify_point(self, point): + return (point[0] if point[0] != self._pos[0] else None, point[1] if point[1] != self._pos[1] else None) + + def _simplify_offset(self, point, offset): + + if point[0] != offset[0]: + xoffset = point[0] - offset[0] + else: + xoffset = self._i_none + + if point[1] != offset[1]: + yoffset = point[1] - offset[1] + else: + yoffset = self._j_none + + return (xoffset, yoffset) + + @property + def statements(self): + return self.comments + self.header + self.body + self.end + + def set_bounds(self, bounds): + pass + + def _paint_background(self): + pass + + def _select_aperture(self, aperture): + + # Select the right aperture if not already selected + if aperture: + if isinstance(aperture, Circle): + aper = self._get_circle(aperture.diameter, aperture.hole_diameter) + elif isinstance(aperture, Rectangle): + aper = self._get_rectangle(aperture.width, aperture.height) + elif isinstance(aperture, Obround): + aper = self._get_obround(aperture.width, aperture.height) + elif isinstance(aperture, AMGroup): + aper = self._get_amacro(aperture) + else: + raise NotImplementedError('Line with invalid aperture type') + + if aper.d != self._dcode: + self.body.append(ApertureStmt(aper.d)) + self._dcode = aper.d + + def _pre_render_primitive(self, primitive): + + if hasattr(primitive, 'comment'): + self.body.append(CommentStmt(primitive.comment)) + + def _render_line(self, line, color): + + self._select_aperture(line.aperture) + + self._render_level_polarity(line) + + # Get the right function + if self._func != CoordStmt.FUNC_LINEAR: + func = CoordStmt.FUNC_LINEAR + else: + func = None + self._func = CoordStmt.FUNC_LINEAR + + if self._pos != line.start: + self.body.append(CoordStmt.move(func, self._simplify_point(line.start))) + self._pos = line.start + # We already set the function, so the next command doesn't require that + func = None + + point = self._simplify_point(line.end) + + # In some files, we see a lot of duplicated ponts, so omit those + if point[0] != None or point[1] != None: + self.body.append(CoordStmt.line(func, self._simplify_point(line.end))) + self._pos = line.end + elif func: + self.body.append(CoordStmt.mode(func)) + + def _render_arc(self, arc, color): + + # Optionally set the quadrant mode if it has changed: + if arc.quadrant_mode != self._quadrant_mode: + + if arc.quadrant_mode != 'multi-quadrant': + self.body.append(QuadrantModeStmt.single()) + else: + self.body.append(QuadrantModeStmt.multi()) + + self._quadrant_mode = arc.quadrant_mode + + # Select the right aperture if not already selected + self._select_aperture(arc.aperture) + + self._render_level_polarity(arc) + + # Find the right movement mode. Always set to be sure it is really right + dir = arc.direction + if dir == 'clockwise': + func = CoordStmt.FUNC_ARC_CW + self._func = CoordStmt.FUNC_ARC_CW + elif dir == 'counterclockwise': + func = CoordStmt.FUNC_ARC_CCW + self._func = CoordStmt.FUNC_ARC_CCW + else: + raise ValueError('Invalid circular interpolation mode') + + if self._pos != arc.start: + # TODO I'm not sure if this is right + self.body.append(CoordStmt.move(CoordStmt.FUNC_LINEAR, self._simplify_point(arc.start))) + self._pos = arc.start + + center = self._simplify_offset(arc.center, arc.start) + end = self._simplify_point(arc.end) + self.body.append(CoordStmt.arc(func, end, center)) + self._pos = arc.end + + def _render_region(self, region, color): + + self._render_level_polarity(region) + + self.body.append(RegionModeStmt.on()) + + for p in region.primitives: + + if isinstance(p, Line): + self._render_line(p, color) + else: + self._render_arc(p, color) + + if self.explicit_region_move_end: + self.body.append(CoordStmt.move(None, None)) + + self.body.append(RegionModeStmt.off()) + + def _render_level_polarity(self, region): + if region.level_polarity != self._level_polarity: + self._level_polarity = region.level_polarity + self.body.append(LPParamStmt.from_region(region)) + + def _render_flash(self, primitive, aperture): + + self._render_level_polarity(primitive) + + if aperture.d != self._dcode: + self.body.append(ApertureStmt(aperture.d)) + self._dcode = aperture.d + + if self.condensed_flash: + self.body.append(CoordStmt.flash(self._simplify_point(primitive.position))) + else: + self.body.append(CoordStmt.move(None, self._simplify_point(primitive.position))) + self.body.append(CoordStmt.flash(None)) + + self._pos = primitive.position + + def _get_circle(self, diameter, hole_diameter, dcode = None): + '''Define a circlar aperture''' + + aper = self._circles.get((diameter, hole_diameter), None) + + if not aper: + if not dcode: + dcode = self._next_dcode + self._next_dcode += 1 + else: + self._next_dcode = max(dcode + 1, self._next_dcode) + + aper = ADParamStmt.circle(dcode, diameter, hole_diameter) + self._circles[(diameter, hole_diameter)] = aper + self.header.append(aper) + + return aper + + def _render_circle(self, circle, color): + + aper = self._get_circle(circle.diameter, circle.hole_diameter) + self._render_flash(circle, aper) + + def _get_rectangle(self, width, height, dcode = None): + '''Get a rectanglar aperture. If it isn't defined, create it''' + + key = (width, height) + aper = self._rects.get(key, None) + + if not aper: + if not dcode: + dcode = self._next_dcode + self._next_dcode += 1 + else: + self._next_dcode = max(dcode + 1, self._next_dcode) + + aper = ADParamStmt.rect(dcode, width, height) + self._rects[(width, height)] = aper + self.header.append(aper) + + return aper + + def _render_rectangle(self, rectangle, color): + + aper = self._get_rectangle(rectangle.width, rectangle.height) + self._render_flash(rectangle, aper) + + def _get_obround(self, width, height, dcode = None): + + key = (width, height) + aper = self._obrounds.get(key, None) + + if not aper: + if not dcode: + dcode = self._next_dcode + self._next_dcode += 1 + else: + self._next_dcode = max(dcode + 1, self._next_dcode) + + aper = ADParamStmt.obround(dcode, width, height) + self._obrounds[key] = aper + self.header.append(aper) + + return aper + + def _render_obround(self, obround, color): + + aper = self._get_obround(obround.width, obround.height) + self._render_flash(obround, aper) + + def _render_polygon(self, polygon, color): + + aper = self._get_polygon(polygon.radius, polygon.sides, polygon.rotation, polygon.hole_radius) + self._render_flash(polygon, aper) + + def _get_polygon(self, radius, num_vertices, rotation, hole_radius, dcode = None): + + key = (radius, num_vertices, rotation, hole_radius) + aper = self._polygons.get(key, None) + + if not aper: + if not dcode: + dcode = self._next_dcode + self._next_dcode += 1 + else: + self._next_dcode = max(dcode + 1, self._next_dcode) + + aper = ADParamStmt.polygon(dcode, radius * 2, num_vertices, rotation, hole_radius * 2) + self._polygons[key] = aper + self.header.append(aper) + + return aper + + def _render_drill(self, drill, color): + raise ValueError('Drills are not valid in RS274X files') + + def _hash_amacro(self, amgroup): + '''Calculate a very quick hash code for deciding if we should even check AM groups for comparision''' + + # We always start with an X because this forms part of the name + # Basically, in some cases, the name might start with a C, R, etc. That can appear + # to conflict with normal aperture definitions. Technically, it shouldn't because normal + # aperture definitions should have a comma, but in some cases the commit is omitted + hash = 'X' + for primitive in amgroup.primitives: + + hash += primitive.__class__.__name__[0] + + bbox = primitive.bounding_box + hash += str((bbox[0][1] - bbox[0][0]) * 100000)[0:2] + hash += str((bbox[1][1] - bbox[1][0]) * 100000)[0:2] + + if hasattr(primitive, 'primitives'): + hash += str(len(primitive.primitives)) + + if isinstance(primitive, Rectangle): + hash += str(primitive.width * 1000000)[0:2] + hash += str(primitive.height * 1000000)[0:2] + elif isinstance(primitive, Circle): + hash += str(primitive.diameter * 1000000)[0:2] + + if len(hash) > 20: + # The hash might actually get quite complex, so stop before + # it gets too long + break + + return hash + + def _get_amacro(self, amgroup, dcode = None): + # Macros are a little special since we don't have a good way to compare them quickly + # but in most cases, this should work + + hash = self._hash_amacro(amgroup) + macro = None + macroinfo = self._macros.get(hash, None) + + if macroinfo: + + # We have a definition, but check that the groups actually are the same + for macro in macroinfo: + + # Macros should have positions, right? But if the macro is selected for non-flashes + # then it won't have a position. This is of course a bad gerber, but they do exist + if amgroup.position: + position = amgroup.position + else: + position = (0, 0) + + offset = (position[0] - macro[1].position[0], position[1] - macro[1].position[1]) + if amgroup.equivalent(macro[1], offset): + break + macro = None + + # Did we find one in the group0 + if not macro: + # This is a new macro, so define it + if not dcode: + dcode = self._next_dcode + self._next_dcode += 1 + else: + self._next_dcode = max(dcode + 1, self._next_dcode) + + # Create the statements + # TODO + amrenderer = AMGroupContext() + statement = amrenderer.render(amgroup, hash) + + self.header.append(statement) + + aperdef = ADParamStmt.macro(dcode, hash) + self.header.append(aperdef) + + # Store the dcode and the original so we can check if it really is the same + # If it didn't have a postition, set it to 0, 0 + if amgroup.position == None: + amgroup.position = (0, 0) + macro = (aperdef, amgroup) + + if macroinfo: + macroinfo.append(macro) + else: + self._macros[hash] = [macro] + + return macro[0] + + def _render_amgroup(self, amgroup, color): + + aper = self._get_amacro(amgroup) + self._render_flash(amgroup, aper) + + def _render_inverted_layer(self): + pass + + def _new_render_layer(self): + # TODO Might need to implement this + pass + + def _flatten(self): + # TODO Might need to implement this + pass + + def dump(self): + """Write the rendered file to a StringIO steam""" + statements = map(lambda stmt: stmt.to_gerber(self.settings), self.statements) + stream = StringIO() + for statement in statements: + stream.write(statement + '\n') + + return stream |