summaryrefslogtreecommitdiff
path: root/gerber/render/cairo_backend.py
diff options
context:
space:
mode:
Diffstat (limited to 'gerber/render/cairo_backend.py')
-rw-r--r--gerber/render/cairo_backend.py356
1 files changed, 268 insertions, 88 deletions
diff --git a/gerber/render/cairo_backend.py b/gerber/render/cairo_backend.py
index 345f331..0cb230b 100644
--- a/gerber/render/cairo_backend.py
+++ b/gerber/render/cairo_backend.py
@@ -13,18 +13,27 @@
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
-# limitations under the License.
-
-from .render import GerberContext
-
-import cairocffi as cairo
-
-from operator import mul
+# limitations under the License.
+
+try:
+ import cairo
+except ImportError:
+ import cairocffi as cairo
+
+from operator import mul, div
import math
import tempfile
+from .render import GerberContext, RenderSettings
+from .theme import THEMES
from ..primitives import *
+try:
+ from cStringIO import StringIO
+except(ImportError):
+ from io import StringIO
+
+
class GerberCairoContext(GerberContext):
def __init__(self, scale=300):
GerberContext.__init__(self)
@@ -32,42 +41,116 @@ class GerberCairoContext(GerberContext):
self.surface = None
self.ctx = None
self.bg = False
-
- def set_bounds(self, bounds):
+ self.mask = None
+ self.mask_ctx = None
+ self.origin_in_inch = None
+ self.size_in_inch = None
+ self._xform_matrix = None
+
+ @property
+ def origin_in_pixels(self):
+ return tuple(map(mul, self.origin_in_inch, self.scale)) if self.origin_in_inch is not None else (0.0, 0.0)
+
+ @property
+ def size_in_pixels(self):
+ return tuple(map(mul, self.size_in_inch, self.scale)) if self.size_in_inch is not None else (0.0, 0.0)
+
+ def set_bounds(self, bounds, new_surface=False):
origin_in_inch = (bounds[0][0], bounds[1][0])
size_in_inch = (abs(bounds[0][1] - bounds[0][0]), abs(bounds[1][1] - bounds[1][0]))
- size_in_pixels = map(mul, size_in_inch, self.scale)
-
- if self.surface is None:
+ size_in_pixels = tuple(map(mul, size_in_inch, self.scale))
+ self.origin_in_inch = origin_in_inch if self.origin_in_inch is None else self.origin_in_inch
+ self.size_in_inch = size_in_inch if self.size_in_inch is None else self.size_in_inch
+ if (self.surface is None) or new_surface:
self.surface_buffer = tempfile.NamedTemporaryFile()
self.surface = cairo.SVGSurface(self.surface_buffer, size_in_pixels[0], size_in_pixels[1])
self.ctx = cairo.Context(self.surface)
self.ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
self.ctx.scale(1, -1)
self.ctx.translate(-(origin_in_inch[0] * self.scale[0]), (-origin_in_inch[1]*self.scale[0]) - size_in_pixels[1])
- # self.ctx.translate(-(origin_in_inch[0] * self.scale[0]), -origin_in_inch[1]*self.scale[1])
+ self.mask = cairo.SVGSurface(None, size_in_pixels[0], size_in_pixels[1])
+ self.mask_ctx = cairo.Context(self.mask)
+ self.mask_ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
+ self.mask_ctx.scale(1, -1)
+ self.mask_ctx.translate(-(origin_in_inch[0] * self.scale[0]), (-origin_in_inch[1]*self.scale[0]) - size_in_pixels[1])
+ self._xform_matrix = cairo.Matrix(xx=1.0, yy=-1.0, x0=-self.origin_in_pixels[0], y0=self.size_in_pixels[1] + self.origin_in_pixels[1])
+
+ def render_layers(self, layers, filename, theme=THEMES['default']):
+ """ Render a set of layers
+ """
+ self.set_bounds(layers[0].bounds, True)
+ self._paint_background(True)
+ for layer in layers:
+ self._render_layer(layer, theme)
+ self.dump(filename)
+
+ def dump(self, filename):
+ """ Save image as `filename`
+ """
+ if filename and filename.lower().endswith(".svg"):
+ self.surface.finish()
+ self.surface_buffer.flush()
+ with open(filename, "w") as f:
+ self.surface_buffer.seek(0)
+ f.write(self.surface_buffer.read())
+ f.flush()
+ else:
+ return self.surface.write_to_png(filename)
+
+ def dump_str(self):
+ """ Return a string containing the rendered image.
+ """
+ fobj = StringIO()
+ self.surface.write_to_png(fobj)
+ return fobj.getvalue()
+
+ def dump_svg_str(self):
+ """ Return a string containg the rendered SVG.
+ """
+ self.surface.finish()
+ self.surface_buffer.flush()
+ return self.surface_buffer.read()
+
+ def _render_layer(self, layer, theme=THEMES['default']):
+ settings = theme.get(layer.layer_class, RenderSettings())
+ self.color = settings.color
+ self.alpha = settings.alpha
+ self.invert = settings.invert
+ if settings.mirror:
+ raise Warning('mirrored layers aren\'t supported yet...')
+ if self.invert:
+ self._clear_mask()
+ for prim in layer.primitives:
+ self.render(prim)
+ if self.invert:
+ self._render_mask()
def _render_line(self, line, color):
start = map(mul, line.start, self.scale)
end = map(mul, line.end, self.scale)
+ if not self.invert:
+ ctx = self.ctx
+ ctx.set_source_rgba(color[0], color[1], color[2], alpha=self.alpha)
+ ctx.set_operator(cairo.OPERATOR_OVER if line.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
+ else:
+ ctx = self.mask_ctx
+ ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
+ ctx.set_operator(cairo.OPERATOR_CLEAR)
if isinstance(line.aperture, Circle):
width = line.aperture.diameter
- self.ctx.set_source_rgba(*color, alpha=self.alpha)
- self.ctx.set_operator(cairo.OPERATOR_OVER if (line.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
- self.ctx.set_line_width(width * self.scale[0])
- self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
- self.ctx.move_to(*start)
- self.ctx.line_to(*end)
- self.ctx.stroke()
+ ctx.set_line_width(width * self.scale[0])
+ ctx.set_line_cap(cairo.LINE_CAP_ROUND)
+
+ ctx.move_to(*start)
+ ctx.line_to(*end)
+ ctx.stroke()
elif isinstance(line.aperture, Rectangle):
points = [tuple(map(mul, x, self.scale)) for x in line.vertices]
- self.ctx.set_source_rgba(*color, alpha=self.alpha)
- self.ctx.set_operator(cairo.OPERATOR_OVER if (line.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
- self.ctx.set_line_width(0)
- self.ctx.move_to(*points[0])
+ ctx.set_line_width(0)
+ ctx.move_to(*points[0])
for point in points[1:]:
- self.ctx.line_to(*point)
- self.ctx.fill()
+ ctx.line_to(*point)
+ ctx.fill()
def _render_arc(self, arc, color):
center = map(mul, arc.center, self.scale)
@@ -76,27 +159,49 @@ class GerberCairoContext(GerberContext):
radius = self.scale[0] * arc.radius
angle1 = arc.start_angle
angle2 = arc.end_angle
- width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
- self.ctx.set_source_rgba(*color, alpha=self.alpha)
- self.ctx.set_operator(cairo.OPERATOR_OVER if (arc.level_polarity == "dark" and not self.invert)else cairo.OPERATOR_CLEAR)
- self.ctx.set_line_width(width * self.scale[0])
- self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
- self.ctx.move_to(*start) # You actually have to do this...
+ if angle1 == angle2 and arc.quadrant_mode != 'single-quadrant':
+ # Make the angles slightly different otherwise Cario will draw nothing
+ angle2 -= 0.000000001
+ if isinstance(arc.aperture, Circle):
+ width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
+ else:
+ width = max(arc.aperture.width, arc.aperture.height, 0.001)
+
+ if not self.invert:
+ ctx = self.ctx
+ ctx.set_source_rgba(color[0], color[1], color[2], alpha=self.alpha)
+ ctx.set_operator(cairo.OPERATOR_OVER if arc.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
+ else:
+ ctx = self.mask_ctx
+ ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
+ ctx.set_operator(cairo.OPERATOR_CLEAR)
+
+ ctx.set_line_width(width * self.scale[0])
+ ctx.set_line_cap(cairo.LINE_CAP_ROUND)
+ ctx.move_to(*start) # You actually have to do this...
if arc.direction == 'counterclockwise':
- self.ctx.arc(*center, radius=radius, angle1=angle1, angle2=angle2)
+ ctx.arc(center[0], center[1], radius, angle1, angle2)
else:
- self.ctx.arc_negative(*center, radius=radius, angle1=angle1, angle2=angle2)
- self.ctx.move_to(*end) # ...lame
+ ctx.arc_negative(center[0], center[1], radius, angle1, angle2)
+ ctx.move_to(*end) # ...lame
+ ctx.stroke()
def _render_region(self, region, color):
- self.ctx.set_source_rgba(*color, alpha=self.alpha)
- self.ctx.set_operator(cairo.OPERATOR_OVER if (region.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
- self.ctx.set_line_width(0)
- self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
- self.ctx.move_to(*tuple(map(mul, region.primitives[0].start, self.scale)))
+ if not self.invert:
+ ctx = self.ctx
+ ctx.set_source_rgba(color[0], color[1], color[2], alpha=self.alpha)
+ ctx.set_operator(cairo.OPERATOR_OVER if region.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
+ else:
+ ctx = self.mask_ctx
+ ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
+ ctx.set_operator(cairo.OPERATOR_CLEAR)
+
+ ctx.set_line_width(0)
+ ctx.set_line_cap(cairo.LINE_CAP_ROUND)
+ ctx.move_to(*tuple(map(mul, region.primitives[0].start, self.scale)))
for p in region.primitives:
if isinstance(p, Line):
- self.ctx.line_to(*tuple(map(mul, p.end, self.scale)))
+ ctx.line_to(*tuple(map(mul, p.end, self.scale)))
else:
center = map(mul, p.center, self.scale)
start = map(mul, p.start, self.scale)
@@ -105,76 +210,151 @@ class GerberCairoContext(GerberContext):
angle1 = p.start_angle
angle2 = p.end_angle
if p.direction == 'counterclockwise':
- self.ctx.arc(*center, radius=radius, angle1=angle1, angle2=angle2)
+ ctx.arc(center[0], center[1], radius, angle1, angle2)
else:
- self.ctx.arc_negative(*center, radius=radius, angle1=angle1, angle2=angle2)
- self.ctx.fill()
+ ctx.arc_negative(center[0], center[1], radius, angle1, angle2)
+ ctx.fill()
def _render_circle(self, circle, color):
center = tuple(map(mul, circle.position, self.scale))
- self.ctx.set_source_rgba(*color, alpha=self.alpha)
- self.ctx.set_operator(cairo.OPERATOR_OVER if (circle.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
- self.ctx.set_line_width(0)
- self.ctx.arc(*center, radius=circle.radius * self.scale[0], angle1=0, angle2=2 * math.pi)
- self.ctx.fill()
+ if not self.invert:
+ ctx = self.ctx
+ ctx.set_source_rgba(*color, alpha=self.alpha)
+ ctx.set_operator(cairo.OPERATOR_OVER if circle.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
+ else:
+ ctx = self.mask_ctx
+ ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
+ ctx.set_operator(cairo.OPERATOR_CLEAR)
+ ctx.set_line_width(0)
+ ctx.arc(center[0], center[1], radius=circle.radius * self.scale[0], angle1=0, angle2=2 * math.pi)
+ ctx.fill()
def _render_rectangle(self, rectangle, color):
ll = map(mul, rectangle.lower_left, self.scale)
width, height = tuple(map(mul, (rectangle.width, rectangle.height), map(abs, self.scale)))
- self.ctx.set_source_rgba(*color, alpha=self.alpha)
- self.ctx.set_operator(cairo.OPERATOR_OVER if (rectangle.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
- self.ctx.set_line_width(0)
- self.ctx.rectangle(*ll,width=width, height=height)
- self.ctx.fill()
+
+ if not self.invert:
+ ctx = self.ctx
+ ctx.set_source_rgba(color[0], color[1], color[2], alpha=self.alpha)
+ ctx.set_operator(cairo.OPERATOR_OVER if rectangle.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
+ else:
+ ctx = self.mask_ctx
+ ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
+ ctx.set_operator(cairo.OPERATOR_CLEAR)
+
+ if rectangle.rotation != 0:
+ ctx.save()
+
+ center = map(mul, rectangle.position, self.scale)
+ matrix = cairo.Matrix()
+ matrix.translate(center[0], center[1])
+ # For drawing, we already handles the translation
+ ll[0] = ll[0] - center[0]
+ ll[1] = ll[1] - center[1]
+ matrix.rotate(rectangle.rotation)
+ ctx.transform(matrix)
+
+ ctx.set_line_width(0)
+ ctx.rectangle(ll[0], ll[1], width, height)
+ ctx.fill()
+
+ if rectangle.rotation != 0:
+ ctx.restore()
def _render_obround(self, obround, color):
self._render_circle(obround.subshapes['circle1'], color)
self._render_circle(obround.subshapes['circle2'], color)
self._render_rectangle(obround.subshapes['rectangle'], color)
+
+ def _render_polygon(self, polygon, color):
+ if polygon.hole_radius > 0:
+ self.ctx.push_group()
+
+ vertices = polygon.vertices
+
+ self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
+ self.ctx.set_operator(cairo.OPERATOR_OVER if (polygon.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
+ self.ctx.set_line_width(0)
+ self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
+
+ # Start from before the end so it is easy to iterate and make sure it is closed
+ self.ctx.move_to(*map(mul, vertices[-1], self.scale))
+ for v in vertices:
+ self.ctx.line_to(*map(mul, v, self.scale))
+
+ self.ctx.fill()
+
+ if polygon.hole_radius > 0:
+ # Render the center clear
+ center = tuple(map(mul, polygon.position, self.scale))
+ self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
+ self.ctx.set_operator(cairo.OPERATOR_CLEAR)
+ self.ctx.set_line_width(0)
+ self.ctx.arc(center[0], center[1], polygon.hole_radius * self.scale[0], 0, 2 * math.pi)
+ self.ctx.fill()
+
+ self.ctx.pop_group_to_source()
+ self.ctx.paint_with_alpha(1)
def _render_drill(self, circle, color):
self._render_circle(circle, color)
+
+ def _render_slot(self, slot, color):
+ start = map(mul, slot.start, self.scale)
+ end = map(mul, slot.end, self.scale)
+
+ width = slot.diameter
+
+ if not self.invert:
+ ctx = self.ctx
+ ctx.set_source_rgba(color[0], color[1], color[2], alpha=self.alpha)
+ ctx.set_operator(cairo.OPERATOR_OVER if slot.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
+ else:
+ ctx = self.mask_ctx
+ ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
+ ctx.set_operator(cairo.OPERATOR_CLEAR)
+
+ ctx.set_line_width(width * self.scale[0])
+ ctx.set_line_cap(cairo.LINE_CAP_ROUND)
+ ctx.move_to(*start)
+ ctx.line_to(*end)
+ ctx.stroke()
+
+ def _render_amgroup(self, amgroup, color):
+ self.ctx.push_group()
+ for primitive in amgroup.primitives:
+ self.render(primitive)
+ self.ctx.pop_group_to_source()
+ self.ctx.paint_with_alpha(1)
def _render_test_record(self, primitive, color):
- self.ctx.select_font_face('monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL)
- self.ctx.set_font_size(200)
- self._render_circle(Circle(primitive.position, 0.01), color)
- self.ctx.set_source_rgb(*color)
- self.ctx.set_operator(cairo.OPERATOR_OVER if (primitive.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
- self.ctx.move_to(*[self.scale[0] * (coord + 0.01) for coord in primitive.position])
+ position = tuple(map(add, primitive.position, self.origin_in_inch))
+ self.ctx.set_operator(cairo.OPERATOR_OVER)
+ self.ctx.select_font_face('monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD)
+ self.ctx.set_font_size(13)
+ self._render_circle(Circle(position, 0.015), color)
+ self.ctx.set_source_rgba(*color, alpha=self.alpha)
+ self.ctx.set_operator(cairo.OPERATOR_OVER if primitive.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
+ self.ctx.move_to(*[self.scale[0] * (coord + 0.015) for coord in position])
self.ctx.scale(1, -1)
self.ctx.show_text(primitive.net_name)
self.ctx.scale(1, -1)
+
+ def _clear_mask(self):
+ self.mask_ctx.set_operator(cairo.OPERATOR_OVER)
+ self.mask_ctx.set_source_rgba(self.background_color[0], self.background_color[1], self.background_color[2], alpha=self.alpha)
+ self.mask_ctx.paint()
- def _paint_inverted_layer(self):
- self.ctx.set_source_rgba(*self.background_color)
+ def _render_mask(self):
self.ctx.set_operator(cairo.OPERATOR_OVER)
+ ptn = cairo.SurfacePattern(self.mask)
+ ptn.set_matrix(self._xform_matrix)
+ self.ctx.set_source(ptn)
self.ctx.paint()
- self.ctx.set_operator(cairo.OPERATOR_CLEAR)
- def _paint_background(self):
- if not self.bg:
- self.bg = True
- self.ctx.set_source_rgba(*self.background_color)
+ def _paint_background(self, force=False):
+ if (not self.bg) or force:
+ self.bg = True
+ self.ctx.set_source_rgba(self.background_color[0], self.background_color[1], self.background_color[2], alpha=1.0)
self.ctx.paint()
-
- def dump(self, filename):
- is_svg = filename.lower().endswith(".svg")
-
- if is_svg:
- self.surface.finish()
- self.surface_buffer.flush()
-
- with open(filename, "w") as f:
- self.surface_buffer.seek(0)
- f.write(self.surface_buffer.read())
- f.flush()
-
- else:
- self.surface.write_to_png(filename)
-
- def dump_svg_str(self):
- self.surface.finish()
- self.surface_buffer.flush()
- return self.surface_buffer.read()
- \ No newline at end of file
+