summaryrefslogtreecommitdiff
path: root/gerber/primitives.py
diff options
context:
space:
mode:
Diffstat (limited to 'gerber/primitives.py')
-rw-r--r--gerber/primitives.py437
1 files changed, 423 insertions, 14 deletions
diff --git a/gerber/primitives.py b/gerber/primitives.py
index 0ac12af..90b6fb9 100644
--- a/gerber/primitives.py
+++ b/gerber/primitives.py
@@ -17,7 +17,7 @@
import math
from operator import add, sub
-from .utils import validate_coordinates, inch, metric
+from .utils import validate_coordinates, inch, metric, rotate_point, nearly_equal
class Primitive(object):
@@ -43,7 +43,15 @@ class Primitive(object):
self._to_convert = list()
self.id = id
self.statement_id = statement_id
+
+ @property
+ def flashed(self):
+ '''Is this a flashed primitive'''
+
+ raise NotImplementedError('Is flashed must be '
+ 'implemented in subclass')
+ @property
def bounding_box(self):
""" Calculate bounding box
@@ -53,6 +61,17 @@ class Primitive(object):
"""
raise NotImplementedError('Bounding box calculation must be '
'implemented in subclass')
+
+ @property
+ def bounding_box_no_aperture(self):
+ """ Calculate bouxing box without considering the aperture
+
+ for most objects, this is the same as the bounding_box, but is different for
+ Lines and Arcs (which are not flashed)
+
+ Return ((min x, max x), (min y, max y))
+ """
+ return self.bounding_box
def to_inch(self):
if self.units == 'metric':
@@ -96,10 +115,13 @@ class Primitive(object):
setattr(self, attr, metric(value))
def offset(self, x_offset=0, y_offset=0):
- pass
+ raise NotImplementedError('The offset member must be implemented')
def __eq__(self, other):
return self.__dict__ == other.__dict__
+
+ def to_statement(self):
+ pass
class Line(Primitive):
@@ -111,6 +133,10 @@ class Line(Primitive):
self.end = end
self.aperture = aperture
self._to_convert = ['start', 'end', 'aperture']
+
+ @property
+ def flashed(self):
+ return False
@property
def angle(self):
@@ -131,6 +157,15 @@ class Line(Primitive):
min_y = min(self.start[1], self.end[1]) - height_2
max_y = max(self.start[1], self.end[1]) + height_2
return ((min_x, max_x), (min_y, max_y))
+
+ @property
+ def bounding_box_no_aperture(self):
+ '''Gets the bounding box without the aperture'''
+ min_x = min(self.start[0], self.end[0])
+ max_x = max(self.start[0], self.end[0])
+ min_y = min(self.start[1], self.end[1])
+ max_y = max(self.start[1], self.end[1])
+ return ((min_x, max_x), (min_y, max_y))
@property
def vertices(self):
@@ -183,20 +218,34 @@ class Line(Primitive):
def offset(self, x_offset=0, y_offset=0):
self.start = tuple(map(add, self.start, (x_offset, y_offset)))
self.end = tuple(map(add, self.end, (x_offset, y_offset)))
+
+ def equivalent(self, other, offset):
+
+ if not isinstance(other, Line):
+ return False
+
+ equiv_start = tuple(map(add, other.start, offset))
+ equiv_end = tuple(map(add, other.end, offset))
+ return nearly_equal(self.start, equiv_start) and nearly_equal(self.end, equiv_end)
class Arc(Primitive):
"""
"""
- def __init__(self, start, end, center, direction, aperture, **kwargs):
+ def __init__(self, start, end, center, direction, aperture, quadrant_mode, **kwargs):
super(Arc, self).__init__(**kwargs)
self.start = start
self.end = end
self.center = center
self.direction = direction
self.aperture = aperture
+ self.quadrant_mode = quadrant_mode
self._to_convert = ['start', 'end', 'center', 'aperture']
+ @property
+ def flashed(self):
+ return False
+
@property
def radius(self):
dy, dx = map(sub, self.start, self.center)
@@ -256,10 +305,60 @@ class Arc(Primitive):
if theta1 <= math.pi * 1.5 and (theta0 >= math.pi * 1.5 or theta0 < theta1):
points.append((self.center[0], self.center[1] - self.radius ))
x, y = zip(*points)
- min_x = min(x) - self.aperture.radius
- max_x = max(x) + self.aperture.radius
- min_y = min(y) - self.aperture.radius
- max_y = max(y) + self.aperture.radius
+
+ if isinstance(self.aperture, Circle):
+ radius = self.aperture.radius
+ else:
+ # TODO this is actually not valid, but files contain it
+ width = self.aperture.width
+ height = self.aperture.height
+ radius = max(width, height)
+
+ min_x = min(x) - radius
+ max_x = max(x) + radius
+ min_y = min(y) - radius
+ max_y = max(y) + radius
+ return ((min_x, max_x), (min_y, max_y))
+
+ @property
+ def bounding_box_no_aperture(self):
+ '''Gets the bounding box without considering the aperture'''
+ two_pi = 2 * math.pi
+ theta0 = (self.start_angle + two_pi) % two_pi
+ theta1 = (self.end_angle + two_pi) % two_pi
+ points = [self.start, self.end]
+ if self.direction == 'counterclockwise':
+ # Passes through 0 degrees
+ if theta0 > theta1:
+ points.append((self.center[0] + self.radius, self.center[1]))
+ # Passes through 90 degrees
+ if theta0 <= math.pi / 2. and (theta1 >= math.pi / 2. or theta1 < theta0):
+ points.append((self.center[0], self.center[1] + self.radius))
+ # Passes through 180 degrees
+ if theta0 <= math.pi and (theta1 >= math.pi or theta1 < theta0):
+ points.append((self.center[0] - self.radius, self.center[1]))
+ # Passes through 270 degrees
+ if theta0 <= math.pi * 1.5 and (theta1 >= math.pi * 1.5 or theta1 < theta0):
+ points.append((self.center[0], self.center[1] - self.radius ))
+ else:
+ # Passes through 0 degrees
+ if theta1 > theta0:
+ points.append((self.center[0] + self.radius, self.center[1]))
+ # Passes through 90 degrees
+ if theta1 <= math.pi / 2. and (theta0 >= math.pi / 2. or theta0 < theta1):
+ points.append((self.center[0], self.center[1] + self.radius))
+ # Passes through 180 degrees
+ if theta1 <= math.pi and (theta0 >= math.pi or theta0 < theta1):
+ points.append((self.center[0] - self.radius, self.center[1]))
+ # Passes through 270 degrees
+ if theta1 <= math.pi * 1.5 and (theta0 >= math.pi * 1.5 or theta0 < theta1):
+ points.append((self.center[0], self.center[1] - self.radius ))
+ x, y = zip(*points)
+
+ min_x = min(x)
+ max_x = max(x)
+ min_y = min(y)
+ max_y = max(y)
return ((min_x, max_x), (min_y, max_y))
def offset(self, x_offset=0, y_offset=0):
@@ -278,6 +377,10 @@ class Circle(Primitive):
self.diameter = diameter
self._to_convert = ['position', 'diameter']
+ @property
+ def flashed(self):
+ return True
+
@property
def radius(self):
return self.diameter / 2.
@@ -292,6 +395,19 @@ class Circle(Primitive):
def offset(self, x_offset=0, y_offset=0):
self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+
+ def equivalent(self, other, offset):
+ '''Is this the same as the other circle, ignoring the offiset?'''
+
+ if not isinstance(other, Circle):
+ return False
+
+ if self.diameter != other.diameter:
+ return False
+
+ equiv_position = tuple(map(add, other.position, offset))
+
+ return nearly_equal(self.position, equiv_position)
class Ellipse(Primitive):
@@ -305,6 +421,9 @@ class Ellipse(Primitive):
self.height = height
self._to_convert = ['position', 'width', 'height']
+ @property
+ def flashed(self):
+ return True
@property
def bounding_box(self):
@@ -332,6 +451,10 @@ class Ellipse(Primitive):
class Rectangle(Primitive):
"""
+ When rotated, the rotation is about the center point.
+
+ Only aperture macro generated Rectangle objects can be rotated. If you aren't in a AMGroup,
+ then you don't need to worry about rotation
"""
def __init__(self, position, width, height, **kwargs):
super(Rectangle, self).__init__(**kwargs)
@@ -341,7 +464,10 @@ class Rectangle(Primitive):
self.height = height
self._to_convert = ['position', 'width', 'height']
-
+ @property
+ def flashed(self):
+ return True
+
@property
def lower_left(self):
return (self.position[0] - (self._abs_width / 2.),
@@ -372,6 +498,19 @@ class Rectangle(Primitive):
return (math.cos(math.radians(self.rotation)) * self.height +
math.sin(math.radians(self.rotation)) * self.width)
+ def equivalent(self, other, offset):
+ '''Is this the same as the other rect, ignoring the offiset?'''
+
+ if not isinstance(other, Rectangle):
+ return False
+
+ if self.width != other.width or self.height != other.height or self.rotation != other.rotation:
+ return False
+
+ equiv_position = tuple(map(add, other.position, offset))
+
+ return nearly_equal(self.position, equiv_position)
+
class Diamond(Primitive):
"""
@@ -383,6 +522,10 @@ class Diamond(Primitive):
self.width = width
self.height = height
self._to_convert = ['position', 'width', 'height']
+
+ @property
+ def flashed(self):
+ return True
@property
def lower_left(self):
@@ -427,6 +570,10 @@ class ChamferRectangle(Primitive):
self.chamfer = chamfer
self.corners = corners
self._to_convert = ['position', 'width', 'height', 'chamfer']
+
+ @property
+ def flashed(self):
+ return True
@property
def lower_left(self):
@@ -470,6 +617,10 @@ class RoundRectangle(Primitive):
self.radius = radius
self.corners = corners
self._to_convert = ['position', 'width', 'height', 'radius']
+
+ @property
+ def flashed(self):
+ return True
@property
def lower_left(self):
@@ -511,6 +662,10 @@ class Obround(Primitive):
self.width = width
self.height = height
self._to_convert = ['position', 'width', 'height']
+
+ @property
+ def flashed(self):
+ return True
@property
def lower_left(self):
@@ -566,14 +721,24 @@ class Obround(Primitive):
class Polygon(Primitive):
"""
+ Polygon flash defined by a set number of sides.
"""
- def __init__(self, position, sides, radius, **kwargs):
+ def __init__(self, position, sides, radius, hole_radius, **kwargs):
super(Polygon, self).__init__(**kwargs)
validate_coordinates(position)
self.position = position
self.sides = sides
self.radius = radius
+ self.hole_radius = hole_radius
self._to_convert = ['position', 'radius']
+
+ @property
+ def flashed(self):
+ return True
+
+ @property
+ def diameter(self):
+ return self.radius * 2
@property
def bounding_box(self):
@@ -585,7 +750,188 @@ class Polygon(Primitive):
def offset(self, x_offset=0, y_offset=0):
self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+
+ @property
+ def vertices(self):
+
+ offset = self.rotation
+ da = 360.0 / self.sides
+
+ points = []
+ for i in xrange(self.sides):
+ points.append(rotate_point((self.position[0] + self.radius, self.position[1]), offset + da * i, self.position))
+
+ return points
+
+ def equivalent(self, other, offset):
+ """
+ Is this the outline the same as the other, ignoring the position offset?
+ """
+
+ # Quick check if it even makes sense to compare them
+ if type(self) != type(other) or self.sides != other.sides or self.radius != other.radius:
+ return False
+ equiv_pos = tuple(map(add, other.position, offset))
+
+ return nearly_equal(self.position, equiv_pos)
+
+
+class AMGroup(Primitive):
+ """
+ """
+ def __init__(self, amprimitives, stmt = None, **kwargs):
+ """
+
+ stmt : The original statment that generated this, since it is really hard to re-generate from primitives
+ """
+ super(AMGroup, self).__init__(**kwargs)
+
+ self.primitives = []
+ for amprim in amprimitives:
+ prim = amprim.to_primitive(self.units)
+ if isinstance(prim, list):
+ for p in prim:
+ self.primitives.append(p)
+ elif prim:
+ self.primitives.append(prim)
+ self._position = None
+ self._to_convert = ['_position', 'primitives']
+ self.stmt = stmt
+
+ def to_inch(self):
+ if self.units == 'metric':
+ super(AMGroup, self).to_inch()
+
+ # If we also have a stmt, convert that too
+ if self.stmt:
+ self.stmt.to_inch()
+
+
+ def to_metric(self):
+ if self.units == 'inch':
+ super(AMGroup, self).to_metric()
+
+ # If we also have a stmt, convert that too
+ if self.stmt:
+ self.stmt.to_metric()
+
+ @property
+ def flashed(self):
+ return True
+
+ @property
+ def bounding_box(self):
+ xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
+ minx, maxx = zip(*xlims)
+ miny, maxy = zip(*ylims)
+ min_x = min(minx)
+ max_x = max(maxx)
+ min_y = min(miny)
+ max_y = max(maxy)
+ return ((min_x, max_x), (min_y, max_y))
+
+ @property
+ def position(self):
+ return self._position
+
+ def offset(self, x_offset=0, y_offset=0):
+ self._position = tuple(map(add, self._position, (x_offset, y_offset)))
+
+ for primitive in self.primitives:
+ primitive.offset(x_offset, y_offset)
+
+ @position.setter
+ def position(self, new_pos):
+ '''
+ Sets the position of the AMGroup.
+ This offset all of the objects by the specified distance.
+ '''
+
+ if self._position:
+ dx = new_pos[0] - self._position[0]
+ dy = new_pos[1] - self._position[1]
+ else:
+ dx = new_pos[0]
+ dy = new_pos[1]
+
+ for primitive in self.primitives:
+ primitive.offset(dx, dy)
+
+ self._position = new_pos
+
+ def equivalent(self, other, offset):
+ '''
+ Is this the macro group the same as the other, ignoring the position offset?
+ '''
+
+ if len(self.primitives) != len(other.primitives):
+ return False
+
+ # We know they have the same number of primitives, so now check them all
+ for i in range(0, len(self.primitives)):
+ if not self.primitives[i].equivalent(other.primitives[i], offset):
+ return False
+
+ # If we didn't find any differences, then they are the same
+ return True
+
+class Outline(Primitive):
+ """
+ Outlines only exist as the rendering for a apeture macro outline.
+ They don't exist outside of AMGroup objects
+ """
+ def __init__(self, primitives, **kwargs):
+ super(Outline, self).__init__(**kwargs)
+ self.primitives = primitives
+ self._to_convert = ['primitives']
+
+ if self.primitives[0].start != self.primitives[-1].end:
+ raise ValueError('Outline must be closed')
+
+ @property
+ def flashed(self):
+ return True
+
+ @property
+ def bounding_box(self):
+ xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
+ minx, maxx = zip(*xlims)
+ miny, maxy = zip(*ylims)
+ min_x = min(minx)
+ max_x = max(maxx)
+ min_y = min(miny)
+ max_y = max(maxy)
+ return ((min_x, max_x), (min_y, max_y))
+
+ def offset(self, x_offset=0, y_offset=0):
+ for p in self.primitives:
+ p.offset(x_offset, y_offset)
+
+ @property
+ def width(self):
+ bounding_box = self.bounding_box()
+ return bounding_box[0][1] - bounding_box[0][0]
+
+ @property
+ def width(self):
+ bounding_box = self.bounding_box()
+ return bounding_box[1][1] - bounding_box[1][0]
+
+ def equivalent(self, other, offset):
+ '''
+ Is this the outline the same as the other, ignoring the position offset?
+ '''
+
+ # Quick check if it even makes sense to compare them
+ if type(self) != type(other) or len(self.primitives) != len(other.primitives):
+ return False
+
+ for i in range(0, len(self.primitives)):
+ if not self.primitives[i].equivalent(other.primitives[i], offset):
+ return False
+
+ return True
class Region(Primitive):
"""
@@ -594,10 +940,14 @@ class Region(Primitive):
super(Region, self).__init__(**kwargs)
self.primitives = primitives
self._to_convert = ['primitives']
+
+ @property
+ def flashed(self):
+ return False
@property
def bounding_box(self):
- xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
+ xlims, ylims = zip(*[p.bounding_box_no_aperture for p in self.primitives])
minx, maxx = zip(*xlims)
miny, maxy = zip(*ylims)
min_x = min(minx)
@@ -620,6 +970,10 @@ class RoundButterfly(Primitive):
self.position = position
self.diameter = diameter
self._to_convert = ['position', 'diameter']
+
+ @property
+ def flashed(self):
+ return True
@property
def radius(self):
@@ -646,7 +1000,10 @@ class SquareButterfly(Primitive):
self.position = position
self.side = side
self._to_convert = ['position', 'side']
-
+
+ @property
+ def flashed(self):
+ return True
@property
def bounding_box(self):
@@ -682,6 +1039,10 @@ class Donut(Primitive):
self.width = 0.5 * math.sqrt(3.) * outer_diameter
self.height = outer_diameter
self._to_convert = ['position', 'width', 'height', 'inner_diameter', 'outer_diameter']
+
+ @property
+ def flashed(self):
+ return True
@property
def lower_left(self):
@@ -717,7 +1078,11 @@ class SquareRoundDonut(Primitive):
self.inner_diameter = inner_diameter
self.outer_diameter = outer_diameter
self._to_convert = ['position', 'inner_diameter', 'outer_diameter']
-
+
+ @property
+ def flashed(self):
+ return True
+
@property
def lower_left(self):
return tuple([c - self.outer_diameter / 2. for c in self.position])
@@ -741,12 +1106,17 @@ class SquareRoundDonut(Primitive):
class Drill(Primitive):
""" A drill hole
"""
- def __init__(self, position, diameter, **kwargs):
+ def __init__(self, position, diameter, hit, **kwargs):
super(Drill, self).__init__('dark', **kwargs)
validate_coordinates(position)
self.position = position
self.diameter = diameter
- self._to_convert = ['position', 'diameter']
+ self.hit = hit
+ self._to_convert = ['position', 'diameter', 'hit']
+
+ @property
+ def flashed(self):
+ return False
@property
def radius(self):
@@ -762,6 +1132,45 @@ class Drill(Primitive):
def offset(self, x_offset=0, y_offset=0):
self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+
+ def __str__(self):
+ return '<Drill %f (%f, %f) [%s]>' % (self.diameter, self.position[0], self.position[1], self.hit)
+
+
+class Slot(Primitive):
+ """ A drilled slot
+ """
+ def __init__(self, start, end, diameter, hit, **kwargs):
+ super(Slot, self).__init__('dark', **kwargs)
+ validate_coordinates(start)
+ validate_coordinates(end)
+ self.start = start
+ self.end = end
+ self.diameter = diameter
+ self.hit = hit
+ self._to_convert = ['start', 'end', 'diameter', 'hit']
+
+ @property
+ def flashed(self):
+ return False
+
+ @property
+ def radius(self):
+ return self.diameter / 2.
+
+ @property
+ def bounding_box(self):
+ radius = self.radius
+ min_x = min(self.start[0], self.end[0]) - radius
+ max_x = max(self.start[0], self.end[0]) + radius
+ min_y = min(self.start[1], self.end[1]) - radius
+ max_y = max(self.start[1], self.end[1]) + radius
+ return ((min_x, max_x), (min_y, max_y))
+
+ def offset(self, x_offset=0, y_offset=0):
+ self.start = tuple(map(add, self.start, (x_offset, y_offset)))
+ self.end = tuple(map(add, self.end, (x_offset, y_offset)))
+
class TestRecord(Primitive):
""" Netlist Test record