summaryrefslogtreecommitdiff
path: root/coil_parasitics.py
diff options
context:
space:
mode:
Diffstat (limited to 'coil_parasitics.py')
-rw-r--r--coil_parasitics.py152
1 files changed, 145 insertions, 7 deletions
diff --git a/coil_parasitics.py b/coil_parasitics.py
index 08a3603..0eddf6f 100644
--- a/coil_parasitics.py
+++ b/coil_parasitics.py
@@ -108,10 +108,15 @@ def elmer_solver(cwd, stdout_log=None, stderr_log=None):
return result
-@click.command()
+@click.group()
+def cli():
+ pass
+
+
+@cli.command()
@click.option('-d', '--sim-dir', type=click.Path(dir_okay=True, file_okay=False, path_type=Path))
@click.argument('mesh_file', type=click.Path(dir_okay=False, path_type=Path))
-def run_capacitance_simulation(mesh_file, sim_dir):
+def self_capacitance(mesh_file, sim_dir):
physical = dict(enumerate_mesh_bodies(mesh_file))
if sim_dir is not None:
sim_dir = Path(sim_dir)
@@ -168,10 +173,10 @@ def run_capacitance_simulation(mesh_file, sim_dir):
capacitance_matrix = np.loadtxt(tmpdir / 'capacitance.txt')
-@click.command()
+@cli.command()
@click.option('-d', '--sim-dir', type=click.Path(dir_okay=True, file_okay=False, path_type=Path))
@click.argument('mesh_file', type=click.Path(dir_okay=False, path_type=Path))
-def run_inductance_simulation(mesh_file, sim_dir):
+def inductance(mesh_file, sim_dir):
physical = dict(enumerate_mesh_bodies(mesh_file))
if sim_dir is not None:
@@ -264,16 +269,149 @@ def run_inductance_simulation(mesh_file, sim_dir):
elif P is None or R is None or U_mag is None:
raise click.ClickException(f'Error during solver execution. Electrical parameters could not be calculated. See log files for details:\n{solver_stdout.absolute()}\n{solver_stderr.absolute()}')
- U = math.sqrt(P*R)
+ V = math.sqrt(P*R)
I = math.sqrt(P/R)
L = 2*U_mag / (I**2)
- assert math.isclose(U, 1.0, abs_tol=1e-3)
+ assert math.isclose(V, 1.0, abs_tol=1e-3)
+ print(f'Total magnetic field energy: {format_si(U_mag, "J")}')
+ print(f'Reference coil current: {format_si(I, "Ω")}')
print(f'Coil resistance calculated by solver: {format_si(R, "Ω")}')
print(f'Inductance calucated from field: {format_si(L, "H")}')
+@cli.command()
+@click.option('-r', '--reference-field', type=float, required=True)
+@click.option('-d', '--sim-dir', type=click.Path(dir_okay=True, file_okay=False, path_type=Path))
+@click.argument('mesh_file', type=click.Path(dir_okay=False, path_type=Path))
+def mutual_inductance(mesh_file, sim_dir, reference_field):
+ physical = dict(enumerate_mesh_bodies(mesh_file))
+
+ if sim_dir is not None:
+ sim_dir = Path(sim_dir)
+ sim_dir.mkdir(exist_ok=True)
+
+ sim = elmer.load_simulation('3D_steady', 'coil_mag_sim.yml')
+ mesh_dir = '.'
+ mesh_fn = 'mesh'
+ sim.header['Mesh DB'] = f'"{mesh_dir}" "{mesh_fn}"'
+ sim.constants.update({
+ 'Permittivity of Vacuum': str(constants.epsilon_0),
+ 'Gravity(4)': f'0 -1 0 {constants.g}',
+ 'Boltzmann Constant': str(constants.Boltzmann),
+ 'Unit Charge': str(constants.elementary_charge)})
+
+ air = elmer.load_material('air', sim, 'coil_mag_materials.yml')
+ ro4003c = elmer.load_material('ro4003c', sim, 'coil_mag_materials.yml')
+ copper = elmer.load_material('copper', sim, 'coil_mag_materials.yml')
+
+ solver_current = elmer.load_solver('Static_Current_Conduction', sim, 'coil_mag_solvers.yml')
+ solver_magdyn = elmer.load_solver('Magneto_Dynamics', sim, 'coil_mag_solvers.yml')
+ solver_magdyn_calc = elmer.load_solver('Magneto_Dynamics_Calculations', sim, 'coil_mag_solvers.yml')
+
+ copper_eqn = elmer.Equation(sim, 'copperEqn', [solver_current, solver_magdyn, solver_magdyn_calc])
+ air_eqn = elmer.Equation(sim, 'airEqn', [solver_magdyn, solver_magdyn_calc])
+
+ bdy_trace1 = elmer.Body(sim, 'trace1', [physical['trace1'][1]])
+ bdy_trace1.material = copper
+ bdy_trace1.equation = copper_eqn
+
+ bdy_trace2 = elmer.Body(sim, 'trace2', [physical['trace2'][1]])
+ bdy_trace2.material = copper
+ bdy_trace2.equation = copper_eqn
+
+ bdy_sub1 = elmer.Body(sim, 'substrate1', [physical['substrate1'][1]])
+ bdy_sub1.material = ro4003c
+ bdy_sub1.equation = air_eqn
+
+ bdy_sub2 = elmer.Body(sim, 'substrate2', [physical['substrate2'][1]])
+ bdy_sub2.material = ro4003c
+ bdy_sub2.equation = air_eqn
+
+
+ bdy_ab = elmer.Body(sim, 'airbox', [physical['airbox'][1]])
+ bdy_ab.material = air
+ bdy_ab.equation = air_eqn
+
+ bdy_if_top1 = elmer.Body(sim, 'interface_top1', [physical['interface_top1'][1]])
+ bdy_if_top1.material = copper
+ bdy_if_top1.equation = copper_eqn
+
+ bdy_if_bottom1 = elmer.Body(sim, 'interface_bottom1', [physical['interface_bottom1'][1]])
+ bdy_if_bottom1.material = copper
+ bdy_if_bottom1.equation = copper_eqn
+
+ bdy_if_top2 = elmer.Body(sim, 'interface_top2', [physical['interface_top2'][1]])
+ bdy_if_top2.material = copper
+ bdy_if_top2.equation = copper_eqn
+
+ bdy_if_bottom2 = elmer.Body(sim, 'interface_bottom2', [physical['interface_bottom2'][1]])
+ bdy_if_bottom2.material = copper
+ bdy_if_bottom2.equation = copper_eqn
+
+ potential_force = elmer.BodyForce(sim, 'electric_potential', {'Electric Potential': 'Equals "Potential"'})
+ bdy_trace1.body_force = potential_force
+ bdy_trace2.body_force = potential_force
+
+ # boundaries
+ boundary_airbox = elmer.Boundary(sim, 'FarField', [physical['airbox_surface'][1]])
+ boundary_airbox.data['Electric Infinity BC'] = 'True'
+
+ boundary_vplus1 = elmer.Boundary(sim, 'Vplus1', [physical['interface_top1'][1]])
+ boundary_vplus1.data['Potential'] = 1.0
+ boundary_vplus1.data['Save Scalars'] = True
+
+ boundary_vminus1 = elmer.Boundary(sim, 'Vminus1', [physical['interface_bottom1'][1]])
+ boundary_vminus1.data['Potential'] = 0.0
+
+ boundary_vplus2 = elmer.Boundary(sim, 'Vplus2', [physical['interface_top2'][1]])
+ boundary_vplus2.data['Potential'] = 1.0
+ boundary_vplus2.data['Save Scalars'] = True
+
+ boundary_vminus2 = elmer.Boundary(sim, 'Vminus2', [physical['interface_bottom2'][1]])
+ boundary_vminus2.data['Potential'] = 0.0
+
+ with tempfile.TemporaryDirectory() as tmpdir:
+ tmpdir = sim_dir if sim_dir else Path(tmpdir)
+
+ sim.write_startinfo(tmpdir)
+ sim.write_sif(tmpdir)
+ # Convert mesh from gmsh to elemer formats. Also scale it from 1 unit = 1 mm to 1 unit = 1 m (SI units)
+ elmer_grid(mesh_file.absolute(), 'mesh', cwd=tmpdir, scale=[1e-3, 1e-3, 1e-3],
+ stdout_log=(tmpdir / 'ElmerGrid_stdout.log'),
+ stderr_log=(tmpdir / 'ElmerGrid_stderr.log'))
+ solver_stdout, solver_stderr = (tmpdir / 'ElmerSolver_stdout.log'), (tmpdir / 'ElmerSolver_stderr.log')
+ res = elmer_solver(tmpdir,
+ stdout_log=solver_stdout,
+ stderr_log=solver_stderr)
+
+ P, R, U_mag = None, None, None
+ solver_error = False
+ for l in res.stdout.splitlines():
+ if (m := re.fullmatch(r'StatCurrentSolve:\s*Total Heating Power\s*:\s*([0-9.+-Ee]+)\s*', l)):
+ P = float(m.group(1))
+ elif (m := re.fullmatch(r'StatCurrentSolve:\s*Effective Resistance\s*:\s*([0-9.+-Ee]+)\s*', l)):
+ R = float(m.group(1))
+ elif (m := re.fullmatch(r'MagnetoDynamicsCalcFields:\s*ElectroMagnetic Field Energy\s*:\s*([0-9.+-Ee]+)\s*', l)):
+ U_mag = float(m.group(1))
+ elif re.fullmatch(r'IterSolve: Linear iteration did not converge to tolerance', l):
+ solver_error = True
+
+ if solver_error:
+ raise click.ClickException(f'Error: One of the solvers did not converge. See log files for details:\n{solver_stdout.absolute()}\n{solver_stderr.absolute()}')
+ elif P is None or R is None or U_mag is None:
+ raise click.ClickException(f'Error during solver execution. Electrical parameters could not be calculated. See log files for details:\n{solver_stdout.absolute()}\n{solver_stderr.absolute()}')
+
+ V = math.sqrt(P*R)
+ I = math.sqrt(P/R)
+ Lm = (U_mag - 2*reference_field) / ((I/2)**2)
+
+ assert math.isclose(V, 1.0, abs_tol=1e-3)
+
+ print(f'Mutual inductance calucated from field: {format_si(Lm, "H")}')
+
+
if __name__ == '__main__':
- run_inductance_simulation()
+ cli()