summaryrefslogtreecommitdiff
path: root/gerbonara
diff options
context:
space:
mode:
authorjaseg <git@jaseg.de>2022-02-03 01:02:45 +0100
committerjaseg <git@jaseg.de>2022-02-03 01:02:45 +0100
commitac66fd9d6b3561c1a0fb52ac2e196157bcf5f4fd (patch)
tree35af3d6f1c0e1519ccfe40363a022a6b8d1ab494 /gerbonara
parent18b9da86601ad95aaf7f0d3e02617a1970aaf574 (diff)
downloadgerbonara-ac66fd9d6b3561c1a0fb52ac2e196157bcf5f4fd.tar.gz
gerbonara-ac66fd9d6b3561c1a0fb52ac2e196157bcf5f4fd.tar.bz2
gerbonara-ac66fd9d6b3561c1a0fb52ac2e196157bcf5f4fd.zip
More doc!
Diffstat (limited to 'gerbonara')
-rw-r--r--gerbonara/aperture_macros/primitive.py2
-rw-r--r--gerbonara/apertures.py9
-rw-r--r--gerbonara/cam.py52
-rw-r--r--gerbonara/graphic_objects.py3
-rw-r--r--gerbonara/graphic_primitives.py329
-rw-r--r--gerbonara/rs274x.py4
-rw-r--r--gerbonara/utils.py256
7 files changed, 358 insertions, 297 deletions
diff --git a/gerbonara/aperture_macros/primitive.py b/gerbonara/aperture_macros/primitive.py
index 8732520..47ae87b 100644
--- a/gerbonara/aperture_macros/primitive.py
+++ b/gerbonara/aperture_macros/primitive.py
@@ -159,7 +159,7 @@ class Polygon(Primitive):
rotation += deg_to_rad(calc.rotation)
x, y = gp.rotate_point(calc.x, calc.y, rotation, 0, 0)
x, y = x+offset[0], y+offset[1]
- return [ gp.RegularPolygon(calc.x, calc.y, calc.diameter/2, calc.n_vertices, rotation,
+ return [ gp.ArcPoly.from_regular_polygon(calc.x, calc.y, calc.diameter/2, calc.n_vertices, rotation,
polarity_dark=(bool(calc.exposure) == polarity_dark)) ]
def dilate(self, offset, unit):
diff --git a/gerbonara/apertures.py b/gerbonara/apertures.py
index e22b702..d717d36 100644
--- a/gerbonara/apertures.py
+++ b/gerbonara/apertures.py
@@ -10,10 +10,9 @@ from . import graphic_primitives as gp
def _flash_hole(self, x, y, unit=None, polarity_dark=True):
if getattr(self, 'hole_rect_h', None) is not None:
+ w, h = self.unit.convert_to(unit, self.hole_dia), self.unit.convert_to(unit, self.hole_rect_h)
return [*self._primitives(x, y, unit, polarity_dark),
- gp.Rectangle((x, y),
- (self.unit.convert_to(unit, self.hole_dia), self.unit.convert_to(unit, self.hole_rect_h)),
- rotation=self.rotation, polarity_dark=(not polarity_dark))]
+ gp.Rectangle(x, y, w, h, rotation=self.rotation, polarity_dark=(not polarity_dark))]
elif self.hole_dia is not None:
return [*self._primitives(x, y, unit, polarity_dark),
gp.Circle(x, y, self.unit.convert_to(unit, self.hole_dia/2), polarity_dark=(not polarity_dark))]
@@ -312,7 +311,7 @@ class ObroundAperture(Aperture):
rotation : float = 0
def _primitives(self, x, y, unit=None, polarity_dark=True):
- return [ gp.Obround(x, y, self.unit.convert_to(unit, self.w), self.unit.convert_to(unit, self.h),
+ return [ gp.Line.from_obround(x, y, self.unit.convert_to(unit, self.w), self.unit.convert_to(unit, self.h),
rotation=self.rotation, polarity_dark=polarity_dark) ]
def __str__(self):
@@ -370,7 +369,7 @@ class PolygonAperture(Aperture):
self.n_vertices = int(self.n_vertices)
def _primitives(self, x, y, unit=None, polarity_dark=True):
- return [ gp.RegularPolygon(x, y, self.unit.convert_to(unit, self.diameter)/2, self.n_vertices,
+ return [ gp.ArcPoly.from_regular_polygon(x, y, self.unit.convert_to(unit, self.diameter)/2, self.n_vertices,
rotation=self.rotation, polarity_dark=polarity_dark) ]
def __str__(self):
diff --git a/gerbonara/cam.py b/gerbonara/cam.py
index ccf1d2a..cf1d78a 100644
--- a/gerbonara/cam.py
+++ b/gerbonara/cam.py
@@ -198,13 +198,55 @@ class FileSettings:
return format(value, f'0{integer_digits+decimal_digits+1}.{decimal_digits}f')
+class Polyline:
+ """ Class that is internally used to generate compact SVG renderings. Collectes a number of subsequent
+ :py:class:`~.graphic_objects.Line` and :py:class:`~.graphic_objects.Arc` instances into one SVG <path>. """
+
+ def __init__(self, *lines):
+ self.coords = []
+ self.polarity_dark = None
+ self.width = None
+
+ for line in lines:
+ self.append(line)
+
+ def append(self, line):
+ assert isinstance(line, Line)
+ if not self.coords:
+ self.coords.append((line.x1, line.y1))
+ self.coords.append((line.x2, line.y2))
+ self.polarity_dark = line.polarity_dark
+ self.width = line.width
+ return True
+
+ else:
+ x, y = self.coords[-1]
+ if self.polarity_dark == line.polarity_dark and self.width == line.width \
+ and math.isclose(line.x1, x) and math.isclose(line.y1, y):
+ self.coords.append((line.x2, line.y2))
+ return True
+
+ else:
+ return False
+
+ def to_svg(self, fg='black', bg='white', tag=Tag):
+ color = fg if self.polarity_dark else bg
+ if not self.coords:
+ return None
+
+ (x0, y0), *rest = self.coords
+ d = f'M {x0:.6} {y0:.6} ' + ' '.join(f'L {x:.6} {y:.6}' for x, y in rest)
+ width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
+ return tag('path', d=d, style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linejoin: round; stroke-linecap: round')
+
+
class CamFile:
def __init__(self, original_path=None, layer_name=None, import_settings=None):
self.original_path = original_path
self.layer_name = layer_name
self.import_settings = import_settings
- def to_svg(self, tag=Tag, margin=0, arg_unit=MM, svg_unit=MM, force_bounds=None, fg='black', bg='white'):
+ def to_svg(self, margin=0, arg_unit=MM, svg_unit=MM, force_bounds=None, fg='black', bg='white', tag=Tag):
if force_bounds is None:
(min_x, min_y), (max_x, max_y) = self.bounding_box(svg_unit, default=((0, 0), (0, 0)))
@@ -252,15 +294,15 @@ class CamFile:
polyline = gp.Polyline(primitive)
else:
if not polyline.append(primitive):
- tags.append(polyline.to_svg(tag, fg, bg))
+ tags.append(polyline.to_svg(fg, bg, tag=tag))
polyline = gp.Polyline(primitive)
else:
if polyline:
- tags.append(polyline.to_svg(tag, fg, bg))
+ tags.append(polyline.to_svg(fg, bg, tag=tag))
polyline = None
- tags.append(primitive.to_svg(tag, fg, bg))
+ tags.append(primitive.to_svg(fg, bg, tag=tag))
if polyline:
- tags.append(polyline.to_svg(tag, fg, bg))
+ tags.append(polyline.to_svg(fg, bg, tag=tag))
# setup viewport transform flipping y axis
xform = f'translate({content_min_x} {content_min_y+content_h}) scale(1 -1) translate({-content_min_x} {-content_min_y})'
diff --git a/gerbonara/graphic_objects.py b/gerbonara/graphic_objects.py
index cdf593f..c29db5c 100644
--- a/gerbonara/graphic_objects.py
+++ b/gerbonara/graphic_objects.py
@@ -262,7 +262,8 @@ class Region(GraphicObject):
def append(self, obj):
if obj.unit != self.unit:
- raise ValueError('Cannot append Polyline with "{obj.unit}" coords to Region with "{self.unit}" coords.')
+ obj = obj.converted(self.unit)
+
if not self.poly.outline:
self.poly.outline.append(obj.p1)
self.poly.outline.append(obj.p2)
diff --git a/gerbonara/graphic_primitives.py b/gerbonara/graphic_primitives.py
index 889aa92..4d81792 100644
--- a/gerbonara/graphic_primitives.py
+++ b/gerbonara/graphic_primitives.py
@@ -4,210 +4,70 @@ import itertools
from dataclasses import dataclass, KW_ONLY, replace
+from .utils import *
+
@dataclass
class GraphicPrimitive:
_ : KW_ONLY
polarity_dark : bool = True
+ def bounding_box(self):
+ """ Return the axis-aligned bounding box of this feature.
+
+ :returns: ``((min_x, min_Y), (max_x, max_y))``
+ :rtype: tuple
+ """
-def rotate_point(x, y, angle, cx=0, cy=0):
- """ rotate point (x,y) around (cx,cy) clockwise angle radians """
+ raise NotImplementedError()
- return (cx + (x - cx) * math.cos(-angle) - (y - cy) * math.sin(-angle),
- cy + (x - cx) * math.sin(-angle) + (y - cy) * math.cos(-angle))
+ def to_svg(self, fg='black', bg='white', tag=Tag):
+ """ Render this primitive into its SVG representation.
-def min_none(a, b):
- if a is None:
- return b
- if b is None:
- return a
- return min(a, b)
+ :param str fg: Foreground color. Must be an SVG color name.
+ :param str bg: Background color. Must be an SVG color name.
+ :param function tag: Tag constructor to use.
-def max_none(a, b):
- if a is None:
- return b
- if b is None:
- return a
- return max(a, b)
+ :rtype: str
+ """
-def add_bounds(b1, b2):
- (min_x_1, min_y_1), (max_x_1, max_y_1) = b1
- (min_x_2, min_y_2), (max_x_2, max_y_2) = b2
- min_x, min_y = min_none(min_x_1, min_x_2), min_none(min_y_1, min_y_2)
- max_x, max_y = max_none(max_x_1, max_x_2), max_none(max_y_1, max_y_2)
- return ((min_x, min_y), (max_x, max_y))
+ raise NotImplementedError()
-def rad_to_deg(x):
- return x/math.pi * 180
@dataclass
class Circle(GraphicPrimitive):
+ #: Center X coordinate
x : float
+ #: Center y coordinate
y : float
+ #: Radius, not diameter like in :py:class:`.apertures.CircleAperture`
r : float # Here, we use radius as common in modern computer graphics, not diameter as gerber uses.
def bounding_box(self):
return ((self.x-self.r, self.y-self.r), (self.x+self.r, self.y+self.r))
- def to_svg(self, tag, fg, bg):
+ def to_svg(self, fg='black', bg='white', tag=Tag):
color = fg if self.polarity_dark else bg
return tag('circle', cx=self.x, cy=self.y, r=self.r, style=f'fill: {color}')
@dataclass
-class Obround(GraphicPrimitive):
- x : float
- y : float
- w : float
- h : float
- rotation : float # radians!
-
- def to_line(self):
- if self.w > self.h:
- w, a, b = self.h, self.w-self.h, 0
- else:
- w, a, b = self.w, 0, self.h-self.w
- return Line(
- *rotate_point(self.x-a/2, self.y-b/2, self.rotation, self.x, self.y),
- *rotate_point(self.x+a/2, self.y+b/2, self.rotation, self.x, self.y),
- w, polarity_dark=self.polarity_dark)
-
- def bounding_box(self):
- return self.to_line().bounding_box()
-
- def to_svg(self, tag, fg, bg):
- return self.to_line().to_svg(tag, fg, bg)
-
-
-def arc_bounds(x1, y1, x2, y2, cx, cy, clockwise):
- # This is one of these problems typical for computer geometry where out of nowhere a seemingly simple task just
- # happens to be anything but in practice.
- #
- # Online there are a number of algorithms to be found solving this problem. Often, they solve the more general
- # problem for elliptic arcs. We can keep things simple here since we only have circular arcs.
- #
- # This solution manages to handle circular arcs given in gerber format (with explicit center and endpoints, plus
- # sweep direction instead of a format with e.g. angles and radius) without any trigonometric functions (e.g. atan2).
- #
- # cx, cy are relative to p1.
-
- # Center arc on cx, cy
- cx += x1
- cy += y1
- x1 -= cx
- x2 -= cx
- y1 -= cy
- y2 -= cy
- clockwise = bool(clockwise) # bool'ify for XOR/XNOR below
-
- # Calculate radius
- r = math.sqrt(x1**2 + y1**2)
-
- # Calculate in which half-planes (north/south, west/east) P1 and P2 lie.
- # Note that we assume the y axis points upwards, as in Gerber and maths.
- # SVG has its y axis pointing downwards.
- p1_west = x1 < 0
- p1_north = y1 > 0
- p2_west = x2 < 0
- p2_north = y2 > 0
-
- # Calculate bounding box of P1 and P2
- min_x = min(x1, x2)
- min_y = min(y1, y2)
- max_x = max(x1, x2)
- max_y = max(y1, y2)
-
- # North
- # ^
- # |
- # |(0,0)
- # West <-----X-----> East
- # |
- # +Y |
- # ^ v
- # | South
- # |
- # +-----> +X
- #
- # Check whether the arc sweeps over any coordinate axes. If it does, add the intersection point to the bounding box.
- # Note that, since this intersection point is at radius r, it has coordinate e.g. (0, r) for the north intersection.
- # Since we know that the points lie on either side of the coordinate axis, the '0' coordinate of the intersection
- # point will not change the bounding box in that axis--only its 'r' coordinate matters. We also know that the
- # absolute value of that coordinate will be greater than or equal to the old coordinate in that direction since the
- # intersection with the axis is the point where the full circle is tangent to the AABB. Thus, we can blindly set the
- # corresponding coordinate of the bounding box without min()/max()'ing first.
-
- # Handle north/south halfplanes
- if p1_west != p2_west: # arc starts in west half-plane, ends in east half-plane
- if p1_west == clockwise: # arc is clockwise west -> east or counter-clockwise east -> west
- max_y = r # add north to bounding box
- else: # arc is counter-clockwise west -> east or clockwise east -> west
- min_y = -r # south
- else: # Arc starts and ends in same halfplane west/east
- # Since both points are on the arc (at same radius) in one halfplane, we can use the y coord as a proxy for
- # angle comparisons.
- small_arc_is_north_to_south = y1 > y2
- small_arc_is_clockwise = small_arc_is_north_to_south == p1_west
- if small_arc_is_clockwise != clockwise:
- min_y, max_y = -r, r # intersect aabb with both north and south
-
- # Handle west/east halfplanes
- if p1_north != p2_north:
- if p1_north == clockwise:
- max_x = r # east
- else:
- min_x = -r # west
- else:
- small_arc_is_west_to_east = x1 < x2
- small_arc_is_clockwise = small_arc_is_west_to_east == p1_north
- if small_arc_is_clockwise != clockwise:
- min_x, max_x = -r, r # intersect aabb with both north and south
-
- return (min_x+cx, min_y+cy), (max_x+cx, max_y+cy)
-
-
-def point_line_distance(l1, l2, p):
- # https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
- x1, y1 = l1
- x2, y2 = l2
- x0, y0 = p
- length = math.dist(l1, l2)
- if math.isclose(length, 0):
- return math.dist(l1, p)
- return ((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / length
-
-def svg_arc(old, new, center, clockwise):
- r = math.hypot(*center)
- # invert sweep flag since the svg y axis is mirrored
- sweep_flag = int(not clockwise)
- # In the degenerate case where old == new, we always take the long way around. To represent this "full-circle arc"
- # in SVG, we have to split it into two.
- if math.isclose(math.dist(old, new), 0):
- intermediate = old[0] + 2*center[0], old[1] + 2*center[1]
- # Note that we have to preserve the sweep flag to avoid causing self-intersections by flipping the direction of
- # a circular cutin
- return f'A {r:.6} {r:.6} 0 1 {sweep_flag} {intermediate[0]:.6} {intermediate[1]:.6} ' +\
- f'A {r:.6} {r:.6} 0 1 {sweep_flag} {new[0]:.6} {new[1]:.6}'
-
- else: # normal case
- d = point_line_distance(old, new, (old[0]+center[0], old[1]+center[1]))
- large_arc = int((d < 0) == clockwise)
- return f'A {r:.6} {r:.6} 0 {large_arc} {sweep_flag} {new[0]:.6} {new[1]:.6}'
-
-@dataclass
class ArcPoly(GraphicPrimitive):
- """ Polygon whose sides may be either straight lines or circular arcs """
+ """ Polygon whose sides may be either straight lines or circular arcs. """
- # list of (x : float, y : float) tuples. Describes closed outline, i.e. first and last point are considered
- # connected.
+ #: list of (x : float, y : float) tuples. Describes closed outline, i.e. the first and last point are considered
+ #: connected.
outline : list
- # must be either None (all segments are straight lines) or same length as outline.
- # Straight line segments have None entry.
+ #: Must be either None (all segments are straight lines) or same length as outline.
+ #: Straight line segments have None entry.
arc_centers : list = None
@property
def segments(self):
+ """ Return an iterator through all *segments* of this polygon. For each outline segment (line or arc), this
+ iterator will yield a ``(p1, p2, center)`` tuple. If the segment is a straight line, ``center`` will be
+ ``None``.
+ """
ol = self.outline
return itertools.zip_longest(ol, ol[1:] + [ol[0]], self.arc_centers or [])
@@ -223,10 +83,24 @@ class ArcPoly(GraphicPrimitive):
bbox = add_bounds(bbox, line_bounds)
return bbox
+ @classmethod
+ def from_regular_polygon(kls, x:float, y:float, r:float, n:int, rotation:float=0, polarity_dark:bool=True):
+ """ Convert an n-sided gerber polygon to a normal ArcPoly defined by outline """
+
+ delta = 2*math.pi / self.n
+
+ return kls([
+ (self.x + math.cos(self.rotation + i*delta) * self.r,
+ self.y + math.sin(self.rotation + i*delta) * self.r)
+ for i in range(self.n) ], polarity_dark=polarity_dark)
+
def __len__(self):
+ """ Return the number of points on this polygon's outline (which is also the number of segments because the
+ polygon is closed). """
return len(self.outline)
def __bool__(self):
+ """ Return ``True`` if this polygon has any outline points. """
return bool(len(self))
def _path_d(self):
@@ -242,61 +116,44 @@ class ArcPoly(GraphicPrimitive):
clockwise, center = arc
yield svg_arc(old, new, center, clockwise)
- def to_svg(self, tag, fg, bg):
+ def to_svg(self, fg='black', bg='white', tag=Tag):
color = fg if self.polarity_dark else bg
return tag('path', d=' '.join(self._path_d()), style=f'fill: {color}')
-class Polyline:
- def __init__(self, *lines):
- self.coords = []
- self.polarity_dark = None
- self.width = None
-
- for line in lines:
- self.append(line)
-
- def append(self, line):
- assert isinstance(line, Line)
- if not self.coords:
- self.coords.append((line.x1, line.y1))
- self.coords.append((line.x2, line.y2))
- self.polarity_dark = line.polarity_dark
- self.width = line.width
- return True
-
- else:
- x, y = self.coords[-1]
- if self.polarity_dark == line.polarity_dark and self.width == line.width \
- and math.isclose(line.x1, x) and math.isclose(line.y1, y):
- self.coords.append((line.x2, line.y2))
- return True
-
- else:
- return False
-
- def to_svg(self, tag, fg, bg):
- color = fg if self.polarity_dark else bg
- if not self.coords:
- return None
-
- (x0, y0), *rest = self.coords
- d = f'M {x0:.6} {y0:.6} ' + ' '.join(f'L {x:.6} {y:.6}' for x, y in rest)
- width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
- return tag('path', d=d, style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linejoin: round; stroke-linecap: round')
@dataclass
class Line(GraphicPrimitive):
+ """ Straight line with round end caps. """
+ #: Start X coordinate. As usual in modern graphics APIs, this is at the center of the half-circle capping off this
+ #: line.
x1 : float
+ #: Start Y coordinate
y1 : float
+ #: End X coordinate
x2 : float
+ #: End Y coordinate
y2 : float
+ #: Line width
width : float
+ @classmethod
+ def from_obround(kls, x:float, y:float, w:float, h:float, rotation:float=0, polarity_dark:bool=True):
+ """ Convert a gerber obround into a :py:class:`~.graphic_primitives.Line`. """
+ if self.w > self.h:
+ w, a, b = self.h, self.w-self.h, 0
+ else:
+ w, a, b = self.w, 0, self.h-self.w
+
+ return kls(
+ *rotate_point(self.x-a/2, self.y-b/2, self.rotation, self.x, self.y),
+ *rotate_point(self.x+a/2, self.y+b/2, self.rotation, self.x, self.y),
+ w, polarity_dark=self.polarity_dark)
+
def bounding_box(self):
r = self.width / 2
return add_bounds(Circle(self.x1, self.y1, r).bounding_box(), Circle(self.x2, self.y2, r).bounding_box())
- def to_svg(self, tag, fg, bg):
+ def to_svg(self, fg='black', bg='white', tag=Tag):
color = fg if self.polarity_dark else bg
width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
return tag('path', d=f'M {self.x1:.6} {self.y1:.6} L {self.x2:.6} {self.y2:.6}',
@@ -304,14 +161,23 @@ class Line(GraphicPrimitive):
@dataclass
class Arc(GraphicPrimitive):
+ """ Circular arc with line width ``width`` going from ``(x1, y1)`` to ``(x2, y2)`` around center at ``(cx, cy)``. """
+ #: Start X coodinate
x1 : float
+ #: Start Y coodinate
y1 : float
+ #: End X coodinate
x2 : float
+ #: End Y coodinate
y2 : float
- # absolute coordinates
+ #: Center X coordinate relative to ``x1``
cx : float
+ #: Center Y coordinate relative to ``y1``
cy : float
+ #: ``True`` if this arc is clockwise from start to end. Selects between the large arc and the small arc given this
+ #: start, end and center
clockwise : bool
+ #: Line width of this arc.
width : float
def bounding_box(self):
@@ -333,24 +199,25 @@ class Arc(GraphicPrimitive):
arc = arc_bounds(x1, y1, x2, y2, self.cx, self.cy, self.clockwise)
return add_bounds(endpoints, arc) # FIXME add "include_center" switch
- def to_svg(self, tag, fg, bg):
+ def to_svg(self, fg='black', bg='white', tag=Tag):
color = fg if self.polarity_dark else bg
arc = svg_arc((self.x1, self.y1), (self.x2, self.y2), (self.cx, self.cy), self.clockwise)
width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
return tag('path', d=f'M {self.x1:.6} {self.y1:.6} {arc}',
style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linecap: round; fill: none')
-def svg_rotation(angle_rad, cx=0, cy=0):
- return f'rotate({float(rad_to_deg(angle_rad)):.4} {float(cx):.6} {float(cy):.6})'
-
@dataclass
class Rectangle(GraphicPrimitive):
- # coordinates are center coordinates
+ #: **Center** X coordinate
x : float
+ #: **Center** Y coordinate
y : float
+ #: width
w : float
+ #: height
h : float
- rotation : float # radians, around center!
+ #: rotation around center in radians
+ rotation : float
def bounding_box(self):
return self.to_arc_poly().bounding_box()
@@ -367,37 +234,9 @@ class Rectangle(GraphicPrimitive):
(x + (cw+sh), y - (ch+sw)),
])
- @property
- def center(self):
- return self.x + self.w/2, self.y + self.h/2
-
- def to_svg(self, tag, fg, bg):
+ def to_svg(self, fg='black', bg='white', tag=Tag):
color = fg if self.polarity_dark else bg
x, y = self.x - self.w/2, self.y - self.h/2
return tag('rect', x=x, y=y, width=self.w, height=self.h,
transform=svg_rotation(self.rotation, self.x, self.y), style=f'fill: {color}')
-@dataclass
-class RegularPolygon(GraphicPrimitive):
- x : float
- y : float
- r : float
- n : int
- rotation : float # radians!
-
- def to_arc_poly(self):
- ''' convert n-sided gerber polygon to normal ArcPoly defined by outline '''
-
- delta = 2*math.pi / self.n
-
- return ArcPoly([
- (self.x + math.cos(self.rotation + i*delta) * self.r,
- self.y + math.sin(self.rotation + i*delta) * self.r)
- for i in range(self.n) ])
-
- def bounding_box(self):
- return self.to_arc_poly().bounding_box()
-
- def to_svg(self, tag, fg, bg):
- return self.to_arc_poly().to_svg(tag, fg, bg)
-
diff --git a/gerbonara/rs274x.py b/gerbonara/rs274x.py
index 837440f..dbda955 100644
--- a/gerbonara/rs274x.py
+++ b/gerbonara/rs274x.py
@@ -24,12 +24,10 @@ import re
import math
import warnings
from pathlib import Path
-from itertools import count, chain
-from io import StringIO
import dataclasses
from .cam import CamFile, FileSettings
-from .utils import sq_distance, rotate_point, MM, Inch, units, InterpMode, UnknownStatementWarning
+from .utils import MM, Inch, units, InterpMode, UnknownStatementWarning
from .aperture_macros.parse import ApertureMacro, GenericMacros
from . import graphic_primitives as gp
from . import graphic_objects as go
diff --git a/gerbonara/utils.py b/gerbonara/utils.py
index 71251de..d1f9d61 100644
--- a/gerbonara/utils.py
+++ b/gerbonara/utils.py
@@ -30,9 +30,11 @@ from enum import Enum
from math import radians, sin, cos, sqrt, atan2, pi
class UnknownStatementWarning(Warning):
+ """ Gerbonara found an unknown Gerber or Excellon statement. """
pass
class RegexMatcher:
+ """ Internal parsing helper """
def __init__(self):
self.mapping = {}
@@ -51,13 +53,27 @@ class RegexMatcher:
else:
return False
+
class LengthUnit:
+ """ Convenience length unit class. Used in :py:class:`.GraphicObject` and :py:class:`.Aperture` to store lenght
+ information. Provides a number of useful unit conversion functions.
+
+ Singleton, use only global instances ``utils.MM`` and ``utils.Inch``.
+ """
+
def __init__(self, name, shorthand, this_in_mm):
self.name = name
self.shorthand = shorthand
self.factor = this_in_mm
def convert_from(self, unit, value):
+ """ Convert ``value`` from ``unit`` into this unit.
+
+ :param unit: ``MM``, ``Inch`` or one of the strings ``"mm"`` or ``"inch"``
+ :param float value:
+ :rtype: float
+ """
+
if isinstance(unit, str):
unit = units[unit]
@@ -67,6 +83,8 @@ class LengthUnit:
return value * unit.factor / self.factor
def convert_to(self, unit, value):
+ """ :py:meth:`.LengthUnit.convert_from` but in reverse. """
+
if isinstance(unit, str):
unit = to_unit(unit)
@@ -76,9 +94,17 @@ class LengthUnit:
return unit.convert_from(self, value)
def format(self, value):
+ """ Return a human-readdable string representing value in this unit.
+
+ :param float value:
+ :returns: something like "3mm"
+ :rtype: str
+ """
+
return f'{value:.3f}{self.shorthand}' if value is not None else ''
def __call__(self, value, unit):
+ """ Convenience alias for :py:meth:`.LengthUnit.convert_from` """
return self.convert_from(unit, value)
def __eq__(self, other):
@@ -105,12 +131,41 @@ MILLIMETERS_PER_INCH = 25.4
Inch = LengthUnit('inch', 'in', MILLIMETERS_PER_INCH)
MM = LengthUnit('millimeter', 'mm', 1)
units = {'inch': Inch, 'mm': MM, None: None}
-to_unit = lambda name: units[name.lower() if name else None]
+
+def _raise_error(*args, **kwargs):
+ raise SystemError('LengthUnit is a singleton. Use gerbonara.utils.MM or gerbonara.utils.Inch. Please do not invent '
+ 'your own length units, the imperial system is already messed up enough.')
+LengthUnit.__init__ = _raise_error
+
+def to_unit(name):
+ """ Convert string ``name`` into a registered length unit. Returns ``None`` if the argument cannot be converted.
+
+ :param str name: ``'mm'`` or ``'inch'``
+ :returns: ``MM``, ``Inch`` or ``None``
+ :rtype: :py:class:`.LengthUnit` or ``None``
+ """
+
+ if name is None:
+ return None
+
+ if isinstance(name, LengthUnit):
+ return name
+
+ if isinstance(name, str):
+ name = name.lower()
+ if name in units:
+ return units[name]
+
+ raise ValueError(f'Invalid unit {name!r}. Should be either "mm", "inch" or None for no unit.')
class InterpMode(Enum):
+ """ Gerber / Excellon interpolation mode. """
+ #: straight line
LINEAR = 0
+ #: clockwise circular arc
CIRCULAR_CW = 1
+ #: counterclockwise circular arc
CIRCULAR_CCW = 2
@@ -151,56 +206,53 @@ def decimal_string(value, precision=6, padding=False):
else:
return int(floatstr)
-def validate_coordinates(position):
- if position is not None:
- if len(position) != 2:
- raise TypeError('Position must be a tuple (n=2) of coordinates')
- else:
- for coord in position:
- if not (isinstance(coord, int) or isinstance(coord, float)):
- raise TypeError('Coordinates must be integers or floats')
-def rotate_point(point, angle, center=(0.0, 0.0)):
- """ Rotate a point about another point.
+def rotate_point(x, y, angle, cx=0, cy=0):
+ """ Rotate point (x,y) around (cx,cy) by ``angle`` radians clockwise. """
- Parameters
- -----------
- point : tuple(<float>, <float>)
- Point to rotate about origin or center point
+ return (cx + (x - cx) * math.cos(-angle) - (y - cy) * math.sin(-angle),
+ cy + (x - cx) * math.sin(-angle) + (y - cy) * math.cos(-angle))
- angle : float
- Angle to rotate the point [degrees]
- center : tuple(<float>, <float>)
- Coordinates about which the point is rotated. Defaults to the origin.
+def min_none(a, b):
+ """ Like the ``min(..)`` builtin, but if either value is ``None``, returns the other. """
+ if a is None:
+ return b
+ if b is None:
+ return a
+ return min(a, b)
- Returns
- -------
- rotated_point : tuple(<float>, <float>)
- `point` rotated about `center` by `angle` degrees.
- """
- angle = radians(angle)
- cos_angle = cos(angle)
- sin_angle = sin(angle)
+def max_none(a, b):
+ """ Like the ``max(..)`` builtin, but if either value is ``None``, returns the other. """
+ if a is None:
+ return b
+ if b is None:
+ return a
+ return max(a, b)
- return (
- cos_angle * (point[0] - center[0]) - sin_angle * (point[1] - center[1]) + center[0],
- sin_angle * (point[0] - center[0]) + cos_angle * (point[1] - center[1]) + center[1])
-def nearly_equal(point1, point2, ndigits = 6):
- '''Are the points nearly equal'''
+def add_bounds(b1, b2):
+ """ Add/union two bounding boxes.
- return round(point1[0] - point2[0], ndigits) == 0 and round(point1[1] - point2[1], ndigits) == 0
+ :param tuple b1: ``((min_x, min_y), (max_x, max_y))``
+ :param tuple b2: ``((min_x, min_y), (max_x, max_y))``
+ :returns: ``((min_x, min_y), (max_x, max_y))``
+ :rtype: tuple
+ """
-def sq_distance(point1, point2):
+ (min_x_1, min_y_1), (max_x_1, max_y_1) = b1
+ (min_x_2, min_y_2), (max_x_2, max_y_2) = b2
+ min_x, min_y = min_none(min_x_1, min_x_2), min_none(min_y_1, min_y_2)
+ max_x, max_y = max_none(max_x_1, max_x_2), max_none(max_y_1, max_y_2)
+ return ((min_x, min_y), (max_x, max_y))
- diff1 = point1[0] - point2[0]
- diff2 = point1[1] - point2[1]
- return diff1 * diff1 + diff2 * diff2
class Tag:
+ """ Helper class to ease creation of SVG. All API functions that create SVG allow you to substitute this with your
+ own implementation by passing a ``tag`` parameter. """
+
def __init__(self, name, children=None, root=False, **attrs):
self.name, self.attrs = name, attrs
self.children = children or []
@@ -216,3 +268,133 @@ class Tag:
return f'{prefix}<{opening}/>'
+def arc_bounds(x1, y1, x2, y2, cx, cy, clockwise):
+ """ Calculate bounding box of a circular arc given in Gerber notation (i.e. with center relative to first point).
+
+ :returns: ``((x_min, y_min), (x_max, y_max))``
+ """
+ # This is one of these problems typical for computer geometry where out of nowhere a seemingly simple task just
+ # happens to be anything but in practice.
+ #
+ # Online there are a number of algorithms to be found solving this problem. Often, they solve the more general
+ # problem for elliptic arcs. We can keep things simple here since we only have circular arcs.
+ #
+ # This solution manages to handle circular arcs given in gerber format (with explicit center and endpoints, plus
+ # sweep direction instead of a format with e.g. angles and radius) without any trigonometric functions (e.g. atan2).
+ #
+ # cx, cy are relative to p1.
+
+ # Center arc on cx, cy
+ cx += x1
+ cy += y1
+ x1 -= cx
+ x2 -= cx
+ y1 -= cy
+ y2 -= cy
+ clockwise = bool(clockwise) # bool'ify for XOR/XNOR below
+
+ # Calculate radius
+ r = math.sqrt(x1**2 + y1**2)
+
+ # Calculate in which half-planes (north/south, west/east) P1 and P2 lie.
+ # Note that we assume the y axis points upwards, as in Gerber and maths.
+ # SVG has its y axis pointing downwards.
+ p1_west = x1 < 0
+ p1_north = y1 > 0
+ p2_west = x2 < 0
+ p2_north = y2 > 0
+
+ # Calculate bounding box of P1 and P2
+ min_x = min(x1, x2)
+ min_y = min(y1, y2)
+ max_x = max(x1, x2)
+ max_y = max(y1, y2)
+
+ # North
+ # ^
+ # |
+ # |(0,0)
+ # West <-----X-----> East
+ # |
+ # +Y |
+ # ^ v
+ # | South
+ # |
+ # +-----> +X
+ #
+ # Check whether the arc sweeps over any coordinate axes. If it does, add the intersection point to the bounding box.
+ # Note that, since this intersection point is at radius r, it has coordinate e.g. (0, r) for the north intersection.
+ # Since we know that the points lie on either side of the coordinate axis, the '0' coordinate of the intersection
+ # point will not change the bounding box in that axis--only its 'r' coordinate matters. We also know that the
+ # absolute value of that coordinate will be greater than or equal to the old coordinate in that direction since the
+ # intersection with the axis is the point where the full circle is tangent to the AABB. Thus, we can blindly set the
+ # corresponding coordinate of the bounding box without min()/max()'ing first.
+
+ # Handle north/south halfplanes
+ if p1_west != p2_west: # arc starts in west half-plane, ends in east half-plane
+ if p1_west == clockwise: # arc is clockwise west -> east or counter-clockwise east -> west
+ max_y = r # add north to bounding box
+ else: # arc is counter-clockwise west -> east or clockwise east -> west
+ min_y = -r # south
+ else: # Arc starts and ends in same halfplane west/east
+ # Since both points are on the arc (at same radius) in one halfplane, we can use the y coord as a proxy for
+ # angle comparisons.
+ small_arc_is_north_to_south = y1 > y2
+ small_arc_is_clockwise = small_arc_is_north_to_south == p1_west
+ if small_arc_is_clockwise != clockwise:
+ min_y, max_y = -r, r # intersect aabb with both north and south
+
+ # Handle west/east halfplanes
+ if p1_north != p2_north:
+ if p1_north == clockwise:
+ max_x = r # east
+ else:
+ min_x = -r # west
+ else:
+ small_arc_is_west_to_east = x1 < x2
+ small_arc_is_clockwise = small_arc_is_west_to_east == p1_north
+ if small_arc_is_clockwise != clockwise:
+ min_x, max_x = -r, r # intersect aabb with both north and south
+
+ return (min_x+cx, min_y+cy), (max_x+cx, max_y+cy)
+
+
+def point_line_distance(l1, l2, p):
+ """ Calculate distance between infinite line through l1 and l2, and point p. """
+ # https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
+ x1, y1 = l1
+ x2, y2 = l2
+ x0, y0 = p
+ length = math.dist(l1, l2)
+ if math.isclose(length, 0):
+ return math.dist(l1, p)
+ return ((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / length
+
+
+def svg_arc(old, new, center, clockwise):
+ """ Format an SVG circular arc "A" path data entry given an arc in Gerber notation (i.e. with center relative to
+ first point).
+
+ :rtype: str
+ """
+ r = math.hypot(*center)
+ # invert sweep flag since the svg y axis is mirrored
+ sweep_flag = int(not clockwise)
+ # In the degenerate case where old == new, we always take the long way around. To represent this "full-circle arc"
+ # in SVG, we have to split it into two.
+ if math.isclose(math.dist(old, new), 0):
+ intermediate = old[0] + 2*center[0], old[1] + 2*center[1]
+ # Note that we have to preserve the sweep flag to avoid causing self-intersections by flipping the direction of
+ # a circular cutin
+ return f'A {r:.6} {r:.6} 0 1 {sweep_flag} {intermediate[0]:.6} {intermediate[1]:.6} ' +\
+ f'A {r:.6} {r:.6} 0 1 {sweep_flag} {new[0]:.6} {new[1]:.6}'
+
+ else: # normal case
+ d = point_line_distance(old, new, (old[0]+center[0], old[1]+center[1]))
+ large_arc = int((d < 0) == clockwise)
+ return f'A {r:.6} {r:.6} 0 {large_arc} {sweep_flag} {new[0]:.6} {new[1]:.6}'
+
+
+def svg_rotation(angle_rad, cx=0, cy=0):
+ return f'rotate({float(math.degrees(angle_rad)):.4} {float(cx):.6} {float(cy):.6})'
+