summaryrefslogtreecommitdiff
path: root/gerbonara/gerber/graphic_primitives.py
diff options
context:
space:
mode:
authorjaseg <git@jaseg.de>2022-01-30 20:11:38 +0100
committerjaseg <git@jaseg.de>2022-01-30 20:11:38 +0100
commitc3ca4f95bd59f69d45e582a4149327f57a360760 (patch)
tree5f43c61a261698e2f671b5238a7aa9a71a0f6d23 /gerbonara/gerber/graphic_primitives.py
parent259a56186820923c78a5688f59bd8249cf958b5f (diff)
downloadgerbonara-c3ca4f95bd59f69d45e582a4149327f57a360760.tar.gz
gerbonara-c3ca4f95bd59f69d45e582a4149327f57a360760.tar.bz2
gerbonara-c3ca4f95bd59f69d45e582a4149327f57a360760.zip
Rename gerbonara/gerber package to just gerbonara
Diffstat (limited to 'gerbonara/gerber/graphic_primitives.py')
-rw-r--r--gerbonara/gerber/graphic_primitives.py403
1 files changed, 0 insertions, 403 deletions
diff --git a/gerbonara/gerber/graphic_primitives.py b/gerbonara/gerber/graphic_primitives.py
deleted file mode 100644
index 65aa28c..0000000
--- a/gerbonara/gerber/graphic_primitives.py
+++ /dev/null
@@ -1,403 +0,0 @@
-
-import math
-import itertools
-
-from dataclasses import dataclass, KW_ONLY, replace
-
-
-@dataclass
-class GraphicPrimitive:
- _ : KW_ONLY
- polarity_dark : bool = True
-
-
-def rotate_point(x, y, angle, cx=0, cy=0):
- """ rotate point (x,y) around (cx,cy) clockwise angle radians """
-
- return (cx + (x - cx) * math.cos(-angle) - (y - cy) * math.sin(-angle),
- cy + (x - cx) * math.sin(-angle) + (y - cy) * math.cos(-angle))
-
-def min_none(a, b):
- if a is None:
- return b
- if b is None:
- return a
- return min(a, b)
-
-def max_none(a, b):
- if a is None:
- return b
- if b is None:
- return a
- return max(a, b)
-
-def add_bounds(b1, b2):
- (min_x_1, min_y_1), (max_x_1, max_y_1) = b1
- (min_x_2, min_y_2), (max_x_2, max_y_2) = b2
- min_x, min_y = min_none(min_x_1, min_x_2), min_none(min_y_1, min_y_2)
- max_x, max_y = max_none(max_x_1, max_x_2), max_none(max_y_1, max_y_2)
- return ((min_x, min_y), (max_x, max_y))
-
-def rad_to_deg(x):
- return x/math.pi * 180
-
-@dataclass
-class Circle(GraphicPrimitive):
- x : float
- y : float
- r : float # Here, we use radius as common in modern computer graphics, not diameter as gerber uses.
-
- def bounding_box(self):
- return ((self.x-self.r, self.y-self.r), (self.x+self.r, self.y+self.r))
-
- def to_svg(self, tag, fg, bg):
- color = fg if self.polarity_dark else bg
- return tag('circle', cx=self.x, cy=self.y, r=self.r, style=f'fill: {color}')
-
-
-@dataclass
-class Obround(GraphicPrimitive):
- x : float
- y : float
- w : float
- h : float
- rotation : float # radians!
-
- def to_line(self):
- if self.w > self.h:
- w, a, b = self.h, self.w-self.h, 0
- else:
- w, a, b = self.w, 0, self.h-self.w
- return Line(
- *rotate_point(self.x-a/2, self.y-b/2, self.rotation, self.x, self.y),
- *rotate_point(self.x+a/2, self.y+b/2, self.rotation, self.x, self.y),
- w, polarity_dark=self.polarity_dark)
-
- def bounding_box(self):
- return self.to_line().bounding_box()
-
- def to_svg(self, tag, fg, bg):
- return self.to_line().to_svg(tag, fg, bg)
-
-
-def arc_bounds(x1, y1, x2, y2, cx, cy, clockwise):
- # This is one of these problems typical for computer geometry where out of nowhere a seemingly simple task just
- # happens to be anything but in practice.
- #
- # Online there are a number of algorithms to be found solving this problem. Often, they solve the more general
- # problem for elliptic arcs. We can keep things simple here since we only have circular arcs.
- #
- # This solution manages to handle circular arcs given in gerber format (with explicit center and endpoints, plus
- # sweep direction instead of a format with e.g. angles and radius) without any trigonometric functions (e.g. atan2).
- #
- # cx, cy are relative to p1.
-
- # Center arc on cx, cy
- cx += x1
- cy += y1
- x1 -= cx
- x2 -= cx
- y1 -= cy
- y2 -= cy
- clockwise = bool(clockwise) # bool'ify for XOR/XNOR below
-
- # Calculate radius
- r = math.sqrt(x1**2 + y1**2)
-
- # Calculate in which half-planes (north/south, west/east) P1 and P2 lie.
- # Note that we assume the y axis points upwards, as in Gerber and maths.
- # SVG has its y axis pointing downwards.
- p1_west = x1 < 0
- p1_north = y1 > 0
- p2_west = x2 < 0
- p2_north = y2 > 0
-
- # Calculate bounding box of P1 and P2
- min_x = min(x1, x2)
- min_y = min(y1, y2)
- max_x = max(x1, x2)
- max_y = max(y1, y2)
-
- # North
- # ^
- # |
- # |(0,0)
- # West <-----X-----> East
- # |
- # +Y |
- # ^ v
- # | South
- # |
- # +-----> +X
- #
- # Check whether the arc sweeps over any coordinate axes. If it does, add the intersection point to the bounding box.
- # Note that, since this intersection point is at radius r, it has coordinate e.g. (0, r) for the north intersection.
- # Since we know that the points lie on either side of the coordinate axis, the '0' coordinate of the intersection
- # point will not change the bounding box in that axis--only its 'r' coordinate matters. We also know that the
- # absolute value of that coordinate will be greater than or equal to the old coordinate in that direction since the
- # intersection with the axis is the point where the full circle is tangent to the AABB. Thus, we can blindly set the
- # corresponding coordinate of the bounding box without min()/max()'ing first.
-
- # Handle north/south halfplanes
- if p1_west != p2_west: # arc starts in west half-plane, ends in east half-plane
- if p1_west == clockwise: # arc is clockwise west -> east or counter-clockwise east -> west
- max_y = r # add north to bounding box
- else: # arc is counter-clockwise west -> east or clockwise east -> west
- min_y = -r # south
- else: # Arc starts and ends in same halfplane west/east
- # Since both points are on the arc (at same radius) in one halfplane, we can use the y coord as a proxy for
- # angle comparisons.
- small_arc_is_north_to_south = y1 > y2
- small_arc_is_clockwise = small_arc_is_north_to_south == p1_west
- if small_arc_is_clockwise != clockwise:
- min_y, max_y = -r, r # intersect aabb with both north and south
-
- # Handle west/east halfplanes
- if p1_north != p2_north:
- if p1_north == clockwise:
- max_x = r # east
- else:
- min_x = -r # west
- else:
- small_arc_is_west_to_east = x1 < x2
- small_arc_is_clockwise = small_arc_is_west_to_east == p1_north
- if small_arc_is_clockwise != clockwise:
- min_x, max_x = -r, r # intersect aabb with both north and south
-
- return (min_x+cx, min_y+cy), (max_x+cx, max_y+cy)
-
-
-def point_line_distance(l1, l2, p):
- # https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
- x1, y1 = l1
- x2, y2 = l2
- x0, y0 = p
- length = math.dist(l1, l2)
- if math.isclose(length, 0):
- return math.dist(l1, p)
- return ((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / length
-
-def svg_arc(old, new, center, clockwise):
- r = math.hypot(*center)
- # invert sweep flag since the svg y axis is mirrored
- sweep_flag = int(not clockwise)
- # In the degenerate case where old == new, we always take the long way around. To represent this "full-circle arc"
- # in SVG, we have to split it into two.
- if math.isclose(math.dist(old, new), 0):
- intermediate = old[0] + 2*center[0], old[1] + 2*center[1]
- # Note that we have to preserve the sweep flag to avoid causing self-intersections by flipping the direction of
- # a circular cutin
- return f'A {r:.6} {r:.6} 0 1 {sweep_flag} {intermediate[0]:.6} {intermediate[1]:.6} ' +\
- f'A {r:.6} {r:.6} 0 1 {sweep_flag} {new[0]:.6} {new[1]:.6}'
-
- else: # normal case
- d = point_line_distance(old, new, (old[0]+center[0], old[1]+center[1]))
- large_arc = int((d < 0) == clockwise)
- return f'A {r:.6} {r:.6} 0 {large_arc} {sweep_flag} {new[0]:.6} {new[1]:.6}'
-
-@dataclass
-class ArcPoly(GraphicPrimitive):
- """ Polygon whose sides may be either straight lines or circular arcs """
-
- # list of (x : float, y : float) tuples. Describes closed outline, i.e. first and last point are considered
- # connected.
- outline : [(float,)]
- # must be either None (all segments are straight lines) or same length as outline.
- # Straight line segments have None entry.
- arc_centers : [(float,)] = None
-
- @property
- def segments(self):
- ol = self.outline
- return itertools.zip_longest(ol, ol[1:] + [ol[0]], self.arc_centers or [])
-
- def bounding_box(self):
- bbox = (None, None), (None, None)
- for (x1, y1), (x2, y2), arc in self.segments:
- if arc:
- clockwise, (cx, cy) = arc
- bbox = add_bounds(bbox, arc_bounds(x1, y1, x2, y2, cx, cy, clockwise))
-
- else:
- line_bounds = (min(x1, x2), min(y1, y2)), (max(x1, x2), max(y1, y2))
- bbox = add_bounds(bbox, line_bounds)
- return bbox
-
- def __len__(self):
- return len(self.outline)
-
- def __bool__(self):
- return bool(len(self))
-
- def _path_d(self):
- if len(self.outline) == 0:
- return
-
- yield f'M {self.outline[0][0]:.6} {self.outline[0][1]:.6}'
-
- for old, new, arc in self.segments:
- if not arc:
- yield f'L {new[0]:.6} {new[1]:.6}'
- else:
- clockwise, center = arc
- yield svg_arc(old, new, center, clockwise)
-
- def to_svg(self, tag, fg, bg):
- color = fg if self.polarity_dark else bg
- return tag('path', d=' '.join(self._path_d()), style=f'fill: {color}')
-
-class Polyline:
- def __init__(self, *lines):
- self.coords = []
- self.polarity_dark = None
- self.width = None
-
- for line in lines:
- self.append(line)
-
- def append(self, line):
- assert isinstance(line, Line)
- if not self.coords:
- self.coords.append((line.x1, line.y1))
- self.coords.append((line.x2, line.y2))
- self.polarity_dark = line.polarity_dark
- self.width = line.width
- return True
-
- else:
- x, y = self.coords[-1]
- if self.polarity_dark == line.polarity_dark and self.width == line.width \
- and math.isclose(line.x1, x) and math.isclose(line.y1, y):
- self.coords.append((line.x2, line.y2))
- return True
-
- else:
- return False
-
- def to_svg(self, tag, fg, bg):
- color = fg if self.polarity_dark else bg
- if not self.coords:
- return None
-
- (x0, y0), *rest = self.coords
- d = f'M {x0:.6} {y0:.6} ' + ' '.join(f'L {x:.6} {y:.6}' for x, y in rest)
- width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
- return tag('path', d=d, style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linejoin: round; stroke-linecap: round')
-
-@dataclass
-class Line(GraphicPrimitive):
- x1 : float
- y1 : float
- x2 : float
- y2 : float
- width : float
-
- def bounding_box(self):
- r = self.width / 2
- return add_bounds(Circle(self.x1, self.y1, r).bounding_box(), Circle(self.x2, self.y2, r).bounding_box())
-
- def to_svg(self, tag, fg, bg):
- color = fg if self.polarity_dark else bg
- width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
- return tag('path', d=f'M {self.x1:.6} {self.y1:.6} L {self.x2:.6} {self.y2:.6}',
- style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linecap: round')
-
-@dataclass
-class Arc(GraphicPrimitive):
- x1 : float
- y1 : float
- x2 : float
- y2 : float
- # absolute coordinates
- cx : float
- cy : float
- clockwise : bool
- width : float
-
- def bounding_box(self):
- r = self.width/2
- endpoints = add_bounds(Circle(self.x1, self.y1, r).bounding_box(), Circle(self.x2, self.y2, r).bounding_box())
-
- arc_r = math.dist((self.cx, self.cy), (self.x1, self.y1))
-
- # extend C -> P1 line by line width / 2 along radius
- dx, dy = self.x1 - self.cx, self.y1 - self.cy
- x1 = self.x1 + dx/arc_r * r
- y1 = self.y1 + dy/arc_r * r
-
- # same for C -> P2
- dx, dy = self.x2 - self.cx, self.y2 - self.cy
- x2 = self.x2 + dx/arc_r * r
- y2 = self.y2 + dy/arc_r * r
-
- arc = arc_bounds(x1, y1, x2, y2, self.cx, self.cy, self.clockwise)
- return add_bounds(endpoints, arc) # FIXME add "include_center" switch
-
- def to_svg(self, tag, fg, bg):
- color = fg if self.polarity_dark else bg
- arc = svg_arc((self.x1, self.y1), (self.x2, self.y2), (self.cx, self.cy), self.clockwise)
- width = f'{self.width:.6}' if not math.isclose(self.width, 0) else '0.01mm'
- return tag('path', d=f'M {self.x1:.6} {self.y1:.6} {arc}',
- style=f'fill: none; stroke: {color}; stroke-width: {width}; stroke-linecap: round; fill: none')
-
-def svg_rotation(angle_rad, cx=0, cy=0):
- return f'rotate({float(rad_to_deg(angle_rad)):.4} {float(cx):.6} {float(cy):.6})'
-
-@dataclass
-class Rectangle(GraphicPrimitive):
- # coordinates are center coordinates
- x : float
- y : float
- w : float
- h : float
- rotation : float # radians, around center!
-
- def bounding_box(self):
- return self.to_arc_poly().bounding_box()
-
- def to_arc_poly(self):
- sin, cos = math.sin(self.rotation), math.cos(self.rotation)
- sw, cw = sin*self.w/2, cos*self.w/2
- sh, ch = sin*self.h/2, cos*self.h/2
- x, y = self.x, self.y
- return ArcPoly([
- (x - (cw+sh), y - (ch+sw)),
- (x - (cw+sh), y + (ch+sw)),
- (x + (cw+sh), y + (ch+sw)),
- (x + (cw+sh), y - (ch+sw)),
- ])
-
- @property
- def center(self):
- return self.x + self.w/2, self.y + self.h/2
-
- def to_svg(self, tag, fg, bg):
- color = fg if self.polarity_dark else bg
- x, y = self.x - self.w/2, self.y - self.h/2
- return tag('rect', x=x, y=y, width=self.w, height=self.h,
- transform=svg_rotation(self.rotation, self.x, self.y), style=f'fill: {color}')
-
-@dataclass
-class RegularPolygon(GraphicPrimitive):
- x : float
- y : float
- r : float
- n : int
- rotation : float # radians!
-
- def to_arc_poly(self):
- ''' convert n-sided gerber polygon to normal ArcPoly defined by outline '''
-
- delta = 2*math.pi / self.n
-
- return ArcPoly([
- (self.x + math.cos(self.rotation + i*delta) * self.r,
- self.y + math.sin(self.rotation + i*delta) * self.r)
- for i in range(self.n) ])
-
- def bounding_box(self):
- return self.to_arc_poly().bounding_box()
-
- def to_svg(self, tag, fg, bg):
- return self.to_arc_poly().to_svg(tag, fg, bg)
-