summaryrefslogtreecommitdiff
path: root/gerbonara/gerber/graphic_primitives.py
diff options
context:
space:
mode:
authorjaseg <git@jaseg.de>2022-01-05 12:43:34 +0100
committerjaseg <git@jaseg.de>2022-01-05 12:43:34 +0100
commit5885b60f14c35a65b67071a439a53aaacf39b594 (patch)
tree2094dabd6a21243f7ae765b08c4f36ce8f2c368a /gerbonara/gerber/graphic_primitives.py
parent483f3dd4f8ff98471abdd2568fae3671ad3ed680 (diff)
downloadgerbonara-5885b60f14c35a65b67071a439a53aaacf39b594.tar.gz
gerbonara-5885b60f14c35a65b67071a439a53aaacf39b594.tar.bz2
gerbonara-5885b60f14c35a65b67071a439a53aaacf39b594.zip
Add a bunch of 2d to_poly / bounding_box functions (untested)
Diffstat (limited to 'gerbonara/gerber/graphic_primitives.py')
-rw-r--r--gerbonara/gerber/graphic_primitives.py259
1 files changed, 225 insertions, 34 deletions
diff --git a/gerbonara/gerber/graphic_primitives.py b/gerbonara/gerber/graphic_primitives.py
index 966cac1..3052322 100644
--- a/gerbonara/gerber/graphic_primitives.py
+++ b/gerbonara/gerber/graphic_primitives.py
@@ -10,7 +10,6 @@ from .gerber_statements import *
class GraphicPrimitive:
_ : KW_ONLY
polarity_dark : bool = True
- unit : str = None
def rotate_point(x, y, angle, cx=0, cy=0):
@@ -19,6 +18,26 @@ def rotate_point(x, y, angle, cx=0, cy=0):
return (cx + (x - cx) * math.cos(-angle) - (y - cy) * math.sin(-angle),
cy + (x - cx) * math.sin(-angle) + (y - cy) * math.cos(-angle))
+def min_none(a, b):
+ if a is None:
+ return b
+ if b is None:
+ return a
+ return min(a, b)
+
+def max_none(a, b):
+ if a is None:
+ return b
+ if b is None:
+ return a
+ return max(a, b)
+
+def add_bounds(b1, b2):
+ (min_x_1, min_y_1), (max_x_1, max_y_1) = b1
+ (min_x_2, min_y_2), (max_x_2, max_y_2) = b2
+ min_x, min_y = min_none(min_x_1, min_x_2), min_none(min_y_1, min_y_2)
+ max_x, max_y = max_none(max_x_1, max_x_2), max_none(max_y_1, max_y_2)
+ return ((min_x, min_y), (max_x, max_y))
@dataclass
class Circle(GraphicPrimitive):
@@ -26,9 +45,12 @@ class Circle(GraphicPrimitive):
y : float
r : float # Here, we use radius as common in modern computer graphics, not diameter as gerber uses.
- def bounds(self):
+ def bounding_box(self):
return ((self.x-self.r, self.y-self.r), (self.x+self.r, self.y+self.r))
+ def to_svg(self):
+ return 'circle', (), dict(cx=x, cy=y, r=r)
+
@dataclass
class Obround(GraphicPrimitive):
@@ -38,30 +60,121 @@ class Obround(GraphicPrimitive):
h : float
rotation : float # radians!
- def decompose(self):
- ''' decompose obround to two circles and one rectangle '''
-
- cx = self.x + self.w/2
- cy = self.y + self.h/2
-
+ def to_line(self):
if self.w > self.h:
- x = self.x + self.h/2
- yield Circle(x, cy, self.h/2)
- yield Circle(x + self.w, cy, self.h/2)
- yield Rectangle(x, self.y, self.w - self.h, self.h)
+ w, a, b = self.h, self.w, 0
+ else:
+ w, a, b = self.w, 0, self.h
+ return Line(
+ *rotate_point(self.x-a/2, self.y-b/2, self.rotation, self.x, self.y),
+ *rotate_point(self.x+a/2, self.y+b/2, self.rotation, self.x, self.y),
+ w)
+
+ def bounding_box(self):
+ return self.to_line().bounding_box()
+
+ def to_svg(self):
+ return self.to_line().to_svg()
+
+
+def arc_bounds(x1, y1, x2, y2, cx, cy, clockwise):
+ # This is one of these problems typical for computer geometry where out of nowhere a seemingly simple task just
+ # happens to be anything but in practice.
+ #
+ # Online there are a number of algorithms to be found solving this problem. Often, they solve the more general
+ # problem for elliptic arcs. We can keep things simple here since we only have circular arcs.
+ #
+ # This solution manages to handle circular arcs given in gerber format (with explicit center and endpoints, plus
+ # sweep direction instead of a format with e.g. angles and radius) without any trigonometric functions (e.g. atan2).
+
+ # Center arc on cx, cy
+ x1 -= cx
+ x2 -= cx
+ y1 -= cy
+ y2 -= cy
+ clockwise = bool(clockwise) # bool'ify for XOR/XNOR below
+
+ # Calculate radius
+ r = math.sqrt(x1**2 + y1**2)
+
+ # Calculate in which half-planes (north/south, west/east) P1 and P2 lie.
+ # Note that we assume the y axis points upwards, as in Gerber and maths.
+ # SVG has its y axis pointing downwards.
+ p1_west = x1 < 0
+ p1_north = y1 > 0
+ p2_west = x2 < 0
+ p2_north = y2 > 0
+
+ # Calculate bounding box of P1 and P2
+ min_x = min(x1, x2)
+ min_y = min(y1, y2)
+ max_x = max(x1, x2)
+ max_y = max(y1, y2)
+
+ # North
+ # ^
+ # |
+ # |(0,0)
+ # West <-----X-----> East
+ # |
+ # +Y |
+ # ^ v
+ # | South
+ # |
+ # +-----> +X
+ #
+ # Check whether the arc sweeps over any coordinate axes. If it does, add the intersection point to the bounding box.
+ # Note that, since this intersection point is at radius r, it has coordinate e.g. (0, r) for the north intersection.
+ # Since we know that the points lie on either side of the coordinate axis, the '0' coordinate of the intersection
+ # point will not change the bounding box in that axis--only its 'r' coordinate matters. We also know that the
+ # absolute value of that coordinate will be greater than or equal to the old coordinate in that direction since the
+ # intersection with the axis is the point where the full circle is tangent to the AABB. Thus, we can blindly set the
+ # corresponding coordinate of the bounding box without min()/max()'ing first.
+
+ # Handle north/south halfplanes
+ if p1_west != p2_west: # arc starts in west half-plane, ends in east half-plane
+ if p1_west == clockwise: # arc is clockwise west -> east or counter-clockwise east -> west
+ max_y = r # add north to bounding box
+ else: # arc is counter-clockwise west -> east or clockwise east -> west
+ min_y = -r # south
+ else: # Arc starts and ends in same halfplane west/east
+ # Since both points are on the arc (at same radius) in one halfplane, we can use the y coord as a proxy for
+ # angle comparisons.
+ small_arc_is_north_to_south = y1 > y2
+ small_arc_is_clockwise = small_arc_is_north_to_south == p1_west
+ if small_arc_is_clockwise != clockwise:
+ min_y, max_y = -r, r # intersect aabb with both north and south
+
+ # Handle west/east halfplanes
+ if p1_north != p2_north:
+ if p1_north == clockwise:
+ max_x = r # east
+ else:
+ min_x = -r # west
+ else:
+ small_arc_is_west_to_east = x1 < x2
+ small_arc_is_clockwise = small_arc_is_west_to_east == p1_north
+ if small_arc_is_clockwise != clockwise:
+ min_x, max_x = -r, r # intersect aabb with both north and south
- elif self.h > self.w:
- y = self.y + self.w/2
- yield Circle(cx, y, self.w/2)
- yield Circle(cx, y + self.h, self.w/2)
- yield Rectangle(self.x, y, self.w, self.h - self.w)
+ return (min_x+cx, min_y+cy), (max_x+cx, max_y+cy)
- else:
- yield Circle(cx, cy, self.w/2)
- def bounds(self):
- return ((self.x-self.w/2, self.y-self.h/2), (self.x+self.w/2, self.y+self.h/2))
+def point_distance(a, b):
+ return math.sqrt((b[0] - a[0])**2 + (b[1] - a[1])**2)
+def point_line_distance(l1, l2, p):
+ x1, y1 = l1
+ x2, y2 = l2
+ x0, y0 = p
+ return abs((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1))/point_distance(l1, l2)
+
+def svg_arc(old, new, center, clockwise):
+ r = point_distance(old, new)
+ d = point_line_distance(old, new, center)
+ sweep_flag = int(clockwise)
+ large_arc = int((d > 0) == clockwise) # FIXME check signs
+ return f'A {r:.6} {r:.6} {large_arc} {sweep_flag} {new[0]:.6} {new[1]:.6}'
@dataclass
class ArcPoly(GraphicPrimitive):
@@ -72,15 +185,23 @@ class ArcPoly(GraphicPrimitive):
outline : [(float,)]
# list of radii of segments, must be either None (all segments are straight lines) or same length as outline.
# Straight line segments have None entry.
- arc_centers : [(float,)]
+ arc_centers : [(float,)] = None
@property
def segments(self):
- return itertools.zip_longest(self.outline[:-1], self.outline[1:], self.radii or [])
+ ol = self.outline
+ return itertools.zip_longest(ol, ol[1:] + [ol[0]], self.arc_centers)
+
+ def bounding_box(self):
+ bbox = (None, None), (None, None)
+ for (x1, y1), (x2, y2), arc in self.segments:
+ if arc:
+ clockwise, center = arc
+ bbox = add_bounds(bbox, arc_bounds(x1, y1, x2, y2, *center, clockwise))
- def bounds(self):
- for (x1, y1), (x2, y2), radius in self.segments:
- return
+ else:
+ line_bounds = (min(x1, x2), min(y1, y2)), (max(x1, x2), max(y1, y2))
+ bbox = add_bounds(bbox, line_bounds)
def __len__(self):
return len(self.outline)
@@ -88,6 +209,21 @@ class ArcPoly(GraphicPrimitive):
def __bool__(self):
return bool(len(self))
+ def _path_d(self):
+ if len(self.outline) == 0:
+ return
+
+ yield f'M {outline[0][0]:.6}, {outline[0][1]:.6}'
+ for old, new, arc in self.segments:
+ if not arc:
+ yield f'L {new[0]:.6} {new[1]:.6}'
+ else:
+ clockwise, center = arc
+ yield svg_arc(old, new, center, clockwise)
+
+ def to_svg(self):
+ return 'path', [], {'d': ' '.join(self._path_d())}
+
@dataclass
class Line(GraphicPrimitive):
@@ -97,7 +233,14 @@ class Line(GraphicPrimitive):
y2 : float
width : float
- # FIXME bounds
+ def bounding_box(self):
+ r = self.width / 2
+ return add_bounds(Circle(self.x1, self.y1, r).bounding_box(), Circle(self.x2, self.y2, r).bounding_box())
+
+ def to_svg(self):
+ return 'path', [], dict(
+ d=f'M {self.x1:.6} {self.y1:.6} L {self.x2:.6} {self.y2:.6}',
+ style=f'stroke-width: {self.width:.6}; stroke-linecap: round')
@dataclass
class Arc(GraphicPrimitive):
@@ -107,10 +250,36 @@ class Arc(GraphicPrimitive):
y2 : float
cx : float
cy : float
- flipped : bool
+ clockwise : bool
width : float
- # FIXME bounds
+ def bounding_box(self):
+ r = self.w/2
+ endpoints = add_bounds(Circle(self.x1, self.y1, r).bounding_box(), Circle(self.x2, self.y2, r).bounding_box())
+
+ arc_r = point_distance((self.cx, self.cy), (self.x1, self.y1))
+
+ # extend C -> P1 line by line width / 2 along radius
+ dx, dy = self.x1 - self.cx, self.y1 - self.cy
+ x1 = self.x1 + dx/arc_r * r
+ y1 = self.y1 + dy/arc_r * r
+
+ # same for C -> P2
+ dx, dy = self.x2 - self.cx, self.y2 - self.cy
+ x2 = self.x2 + dx/arc_r * r
+ y2 = self.y2 + dy/arc_r * r
+
+ arc = arc_bounds(x1, y1, x2, y2, cx, cy, self.clockwise)
+ return add_bounds(endpoints, arc) # FIXME add "include_center" switch
+
+ def to_svg(self):
+ arc = svg_arc((self.x1, self.y1), (self.x2, self.y2), (self.cx, self.cy), self.clockwise)
+ return 'path', [], dict(
+ d=f'M {self.x1:.6} {self.y1:.6} {arc}',
+ style=f'stroke-width: {self.width:.6}; stroke-linecap: round')
+
+def svg_rotation(angle_rad):
+ return f'rotation({angle_rad/math.pi*180:.4})'
@dataclass
class Rectangle(GraphicPrimitive):
@@ -121,13 +290,29 @@ class Rectangle(GraphicPrimitive):
h : float
rotation : float # radians, around center!
- def bounds(self):
- return ((self.x, self.y), (self.x+self.w, self.y+self.h))
+ def bounding_box(self):
+ return self.to_arc_poly().bounding_box()
+
+ def to_arc_poly(self):
+ sin, cos = math.sin(self.rotation), math.cos(self.rotation)
+ sw, cw = sin*self.w/2, cos*self.w/2
+ sh, ch = sin*self.h/2, cos*self.h/2
+ x, y = self.x, self.y
+ return ArcPoly([
+ (x - (cw+sh), y - (ch+sw)),
+ (x - (cw+sh), y + (ch+sw)),
+ (x + (cw+sh), y + (ch+sw)),
+ (x + (cw+sh), y - (ch+sw)),
+ ])
@property
def center(self):
return self.x + self.w/2, self.y + self.h/2
+ def to_svg(self):
+ x, y = self.x - self.w/2, self.y - self.h/2
+ return 'rect', [], dict(x=x, y=y, w=self.w, h=self.h, transform=svg_rotation(self.rotation))
+
class RegularPolygon(GraphicPrimitive):
x : float
@@ -136,13 +321,19 @@ class RegularPolygon(GraphicPrimitive):
n : int
rotation : float # radians!
- def decompose(self):
- ''' convert n-sided gerber polygon to normal Region defined by outline '''
+ def to_arc_poly(self):
+ ''' convert n-sided gerber polygon to normal ArcPoly defined by outline '''
delta = 2*math.pi / self.n
- yield Region([
+ return ArcPoly([
(self.x + math.cos(self.rotation + i*delta) * self.r,
self.y + math.sin(self.rotation + i*delta) * self.r)
for i in range(self.n) ])
+ def bounding_box(self):
+ return self.to_arc_poly().bounding_box()
+
+ def to_svg(self):
+ return self.to_arc_poly().to_svg()
+