summaryrefslogtreecommitdiff
path: root/gerber/render
diff options
context:
space:
mode:
authorPaulo Henrique Silva <ph.silva@gmail.com>2016-11-16 23:54:09 -0200
committerGitHub <noreply@github.com>2016-11-16 23:54:09 -0200
commit521fe89150c6aaa0ff0954cc8d32e4b6f8009324 (patch)
tree59cef68f1449a5be8d2a9a8ed352e3d9974a3edb /gerber/render
parent7030eee5e28180732c5cf98aeda4b66657223870 (diff)
parent1e868763a1c4030bedd51553468cbe25f272bef9 (diff)
downloadgerbonara-521fe89150c6aaa0ff0954cc8d32e4b6f8009324.tar.gz
gerbonara-521fe89150c6aaa0ff0954cc8d32e4b6f8009324.tar.bz2
gerbonara-521fe89150c6aaa0ff0954cc8d32e4b6f8009324.zip
Merge pull request #58 from garretfick/merge-curtacircuitos
Epic merge from @garretfick Thanks a lot @garretfick and @hamiltonkibbe.
Diffstat (limited to 'gerber/render')
-rw-r--r--gerber/render/cairo_backend.py153
-rw-r--r--gerber/render/excellon_backend.py189
-rw-r--r--gerber/render/render.py48
-rw-r--r--gerber/render/rs274x_backend.py494
4 files changed, 870 insertions, 14 deletions
diff --git a/gerber/render/cairo_backend.py b/gerber/render/cairo_backend.py
index d7026b8..31a1e77 100644
--- a/gerber/render/cairo_backend.py
+++ b/gerber/render/cairo_backend.py
@@ -12,14 +12,19 @@
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+
# See the License for the specific language governing permissions and
# limitations under the License.
+try:
+ import cairo
+except ImportError:
+ import cairocffi as cairo
-import cairocffi as cairo
-import os
+from operator import mul
import tempfile
import copy
+import os
from .render import GerberContext, RenderSettings
from .theme import THEMES
@@ -105,10 +110,13 @@ class GerberCairoContext(GerberContext):
verbose=verbose)
self.dump(filename, verbose)
- def dump(self, filename, verbose=False):
+ def dump(self, filename=None, verbose=False):
""" Save image as `filename`
"""
- is_svg = os.path.splitext(filename.lower())[1] == '.svg'
+ try:
+ is_svg = os.path.splitext(filename.lower())[1] == '.svg'
+ except:
+ is_svg = False
if verbose:
print('[Render]: Writing image to {}'.format(filename))
if is_svg:
@@ -119,7 +127,7 @@ class GerberCairoContext(GerberContext):
f.write(self.surface_buffer.read())
f.flush()
else:
- self.surface.write_to_png(filename)
+ return self.surface.write_to_png(filename)
def dump_str(self):
""" Return a byte-string containing the rendered image.
@@ -154,7 +162,7 @@ class GerberCairoContext(GerberContext):
for prim in layer.primitives:
self.render(prim)
# Add layer to image
- self._paint(settings.color, settings.alpha)
+ self._flatten(settings.color, settings.alpha)
def _render_line(self, line, color):
start = [pos * scale for pos, scale in zip(line.start, self.scale)]
@@ -184,10 +192,17 @@ class GerberCairoContext(GerberContext):
radius = self.scale[0] * arc.radius
angle1 = arc.start_angle
angle2 = arc.end_angle
- width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
+ if angle1 == angle2 and arc.quadrant_mode != 'single-quadrant':
+ # Make the angles slightly different otherwise Cario will draw nothing
+ angle2 -= 0.000000001
+ if isinstance(arc.aperture, Circle):
+ width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
+ else:
+ width = max(arc.aperture.width, arc.aperture.height, 0.001)
+
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if arc.level_polarity == 'dark' and
- (not self.invert) else cairo.OPERATOR_CLEAR)
+ (not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(width * self.scale[0])
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
self.ctx.move_to(*start) # You actually have to do this...
@@ -225,12 +240,23 @@ class GerberCairoContext(GerberContext):
center = self.scale_point(circle.position)
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if circle.level_polarity == 'dark' and
- (not self.invert) else cairo.OPERATOR_CLEAR)
+ (not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(0)
self.ctx.arc(*center, radius=(circle.radius * self.scale[0]), angle1=0,
angle2=(2 * math.pi))
self.ctx.fill()
+ if circle.hole_diameter > 0:
+ # Render the center clear
+
+ self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
+ self.ctx.set_operator(cairo.OPERATOR_CLEAR)
+ self.ctx.arc(center[0], center[1],
+ radius=circle.hole_radius * self.scale[0], angle1=0,
+ angle2=2 * math.pi)
+ self.ctx.fill()
+
+
def _render_rectangle(self, rectangle, color):
lower_left = self.scale_point(rectangle.lower_left)
width, height = tuple([abs(coord) for coord in
@@ -239,19 +265,126 @@ class GerberCairoContext(GerberContext):
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if rectangle.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
+
+ if rectangle.rotation != 0:
+ self.ctx.save()
+
+ center = map(mul, rectangle.position, self.scale)
+ matrix = cairo.Matrix()
+ matrix.translate(center[0], center[1])
+ # For drawing, we already handles the translation
+ lower_left[0] = lower_left[0] - center[0]
+ lower_left[1] = lower_left[1] - center[1]
+ matrix.rotate(rectangle.rotation)
+ self.ctx.transform(matrix)
+
+ if rectangle.hole_diameter > 0:
+ self.ctx.push_group()
+
self.ctx.set_line_width(0)
self.ctx.rectangle(*lower_left, width=width, height=height)
self.ctx.fill()
+ if rectangle.hole_diameter > 0:
+ # Render the center clear
+ self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
+ self.ctx.set_operator(cairo.OPERATOR_CLEAR
+ if rectangle.level_polarity == 'dark'
+ and (not self.invert)
+ else cairo.OPERATOR_SOURCE)
+ center = map(mul, rectangle.position, self.scale)
+ self.ctx.arc(center[0], center[1],
+ radius=rectangle.hole_radius * self.scale[0], angle1=0,
+ angle2=2 * math.pi)
+ self.ctx.fill()
+
+ if rectangle.rotation != 0:
+ self.ctx.restore()
+
def _render_obround(self, obround, color):
+ if obround.hole_diameter > 0:
+ self.ctx.push_group()
+
self._render_circle(obround.subshapes['circle1'], color)
self._render_circle(obround.subshapes['circle2'], color)
self._render_rectangle(obround.subshapes['rectangle'], color)
+ if obround.hole_diameter > 0:
+ # Render the center clear
+ self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
+ self.ctx.set_operator(cairo.OPERATOR_CLEAR)
+ center = map(mul, obround.position, self.scale)
+ self.ctx.arc(center[0], center[1],
+ radius=obround.hole_radius * self.scale[0], angle1=0,
+ angle2=2 * math.pi)
+ self.ctx.fill()
+
+ self.ctx.pop_group_to_source()
+ self.ctx.paint_with_alpha(1)
+
+
+ def _render_polygon(self, polygon, color):
+
+ # TODO Ths does not handle rotation of a polygon
+ self.ctx.set_operator(cairo.OPERATOR_SOURCE
+ if polygon.level_polarity == 'dark' and
+ (not self.invert) else cairo.OPERATOR_CLEAR)
+ if polygon.hole_radius > 0:
+ self.ctx.push_group()
+
+ vertices = polygon.vertices
+
+ self.ctx.set_line_width(0)
+ self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
+
+ # Start from before the end so it is easy to iterate and make sure it is closed
+ self.ctx.move_to(*map(mul, vertices[-1], self.scale))
+ for v in vertices:
+ self.ctx.line_to(*map(mul, v, self.scale))
+
+ self.ctx.fill()
+
+ if polygon.hole_radius > 0:
+ # Render the center clear
+ center = tuple(map(mul, polygon.position, self.scale))
+ self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
+ self.ctx.set_operator(cairo.OPERATOR_CLEAR
+ if polygon.level_polarity == 'dark'
+ and (not self.invert)
+ else cairo.OPERATOR_SOURCE)
+ self.ctx.set_line_width(0)
+ self.ctx.arc(center[0],
+ center[1],
+ polygon.hole_radius * self.scale[0], 0, 2 * math.pi)
+ self.ctx.fill()
+
def _render_drill(self, circle, color=None):
color = color if color is not None else self.drill_color
self._render_circle(circle, color)
+ def _render_slot(self, slot, color):
+ start = map(mul, slot.start, self.scale)
+ end = map(mul, slot.end, self.scale)
+
+ width = slot.diameter
+
+ self.ctx.set_operator(cairo.OPERATOR_SOURCE
+ if slot.level_polarity == 'dark' and
+ (not self.invert) else cairo.OPERATOR_CLEAR)
+
+ self.ctx.set_line_width(width * self.scale[0])
+ self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
+ self.ctx.move_to(*start)
+ self.ctx.line_to(*end)
+ self.ctx.stroke()
+
+ def _render_amgroup(self, amgroup, color):
+ self.ctx.push_group()
+ for primitive in amgroup.primitives:
+ self.render(primitive)
+ self.ctx.pop_group_to_source()
+ self.ctx.paint_with_alpha(1)
+
def _render_test_record(self, primitive, color):
position = [pos + origin for pos, origin in
zip(primitive.position, self.origin_in_inch)]
@@ -285,7 +418,7 @@ class GerberCairoContext(GerberContext):
self.active_layer = layer
self.active_matrix = matrix
- def _paint(self, color=None, alpha=None):
+ def _flatten(self, color=None, alpha=None):
color = color if color is not None else self.color
alpha = alpha if alpha is not None else self.alpha
ptn = cairo.SurfacePattern(self.active_layer)
diff --git a/gerber/render/excellon_backend.py b/gerber/render/excellon_backend.py
new file mode 100644
index 0000000..da5b22b
--- /dev/null
+++ b/gerber/render/excellon_backend.py
@@ -0,0 +1,189 @@
+
+from .render import GerberContext
+from ..excellon import DrillSlot
+from ..excellon_statements import *
+
+class ExcellonContext(GerberContext):
+
+ MODE_DRILL = 1
+ MODE_SLOT =2
+
+ def __init__(self, settings):
+ GerberContext.__init__(self)
+
+ # Statements that we write
+ self.comments = []
+ self.header = []
+ self.tool_def = []
+ self.body_start = [RewindStopStmt()]
+ self.body = []
+ self.start = [HeaderBeginStmt()]
+
+ # Current tool and position
+ self.handled_tools = set()
+ self.cur_tool = None
+ self.drill_mode = ExcellonContext.MODE_DRILL
+ self.drill_down = False
+ self._pos = (None, None)
+
+ self.settings = settings
+
+ self._start_header()
+ self._start_comments()
+
+ def _start_header(self):
+ """Create the header from the settings"""
+
+ self.header.append(UnitStmt.from_settings(self.settings))
+
+ if self.settings.notation == 'incremental':
+ raise NotImplementedError('Incremental mode is not implemented')
+ else:
+ self.body.append(AbsoluteModeStmt())
+
+ def _start_comments(self):
+
+ # Write the digits used - this isn't valid Excellon statement, so we write as a comment
+ self.comments.append(CommentStmt('FILE_FORMAT=%d:%d' % (self.settings.format[0], self.settings.format[1])))
+
+ def _get_end(self):
+ """How we end depends on our mode"""
+
+ end = []
+
+ if self.drill_down:
+ end.append(RetractWithClampingStmt())
+ end.append(RetractWithoutClampingStmt())
+
+ end.append(EndOfProgramStmt())
+
+ return end
+
+ @property
+ def statements(self):
+ return self.start + self.comments + self.header + self.body_start + self.body + self._get_end()
+
+ def set_bounds(self, bounds):
+ pass
+
+ def _paint_background(self):
+ pass
+
+ def _render_line(self, line, color):
+ raise ValueError('Invalid Excellon object')
+ def _render_arc(self, arc, color):
+ raise ValueError('Invalid Excellon object')
+
+ def _render_region(self, region, color):
+ raise ValueError('Invalid Excellon object')
+
+ def _render_level_polarity(self, region):
+ raise ValueError('Invalid Excellon object')
+
+ def _render_circle(self, circle, color):
+ raise ValueError('Invalid Excellon object')
+
+ def _render_rectangle(self, rectangle, color):
+ raise ValueError('Invalid Excellon object')
+
+ def _render_obround(self, obround, color):
+ raise ValueError('Invalid Excellon object')
+
+ def _render_polygon(self, polygon, color):
+ raise ValueError('Invalid Excellon object')
+
+ def _simplify_point(self, point):
+ return (point[0] if point[0] != self._pos[0] else None, point[1] if point[1] != self._pos[1] else None)
+
+ def _render_drill(self, drill, color):
+
+ if self.drill_mode != ExcellonContext.MODE_DRILL:
+ self._start_drill_mode()
+
+ tool = drill.hit.tool
+ if not tool in self.handled_tools:
+ self.handled_tools.add(tool)
+ self.header.append(ExcellonTool.from_tool(tool))
+
+ if tool != self.cur_tool:
+ self.body.append(ToolSelectionStmt(tool.number))
+ self.cur_tool = tool
+
+ point = self._simplify_point(drill.position)
+ self._pos = drill.position
+ self.body.append(CoordinateStmt.from_point(point))
+
+ def _start_drill_mode(self):
+ """
+ If we are not in drill mode, then end the ROUT so we can do basic drilling
+ """
+
+ if self.drill_mode == ExcellonContext.MODE_SLOT:
+
+ # Make sure we are retracted before changing modes
+ last_cmd = self.body[-1]
+ if self.drill_down:
+ self.body.append(RetractWithClampingStmt())
+ self.body.append(RetractWithoutClampingStmt())
+ self.drill_down = False
+
+ # Switch to drill mode
+ self.body.append(DrillModeStmt())
+ self.drill_mode = ExcellonContext.MODE_DRILL
+
+ else:
+ raise ValueError('Should be in slot mode')
+
+ def _render_slot(self, slot, color):
+
+ # Set the tool first, before we might go into drill mode
+ tool = slot.hit.tool
+ if not tool in self.handled_tools:
+ self.handled_tools.add(tool)
+ self.header.append(ExcellonTool.from_tool(tool))
+
+ if tool != self.cur_tool:
+ self.body.append(ToolSelectionStmt(tool.number))
+ self.cur_tool = tool
+
+ # Two types of drilling - normal drill and slots
+ if slot.hit.slot_type == DrillSlot.TYPE_ROUT:
+
+ # For ROUT, setting the mode is part of the actual command.
+
+ # Are we in the right position?
+ if slot.start != self._pos:
+ if self.drill_down:
+ # We need to move into the right position, so retract
+ self.body.append(RetractWithClampingStmt())
+ self.drill_down = False
+
+ # Move to the right spot
+ point = self._simplify_point(slot.start)
+ self._pos = slot.start
+ self.body.append(CoordinateStmt.from_point(point, mode="ROUT"))
+
+ # Now we are in the right spot, so drill down
+ if not self.drill_down:
+ self.body.append(ZAxisRoutPositionStmt())
+ self.drill_down = True
+
+ # Do a linear move from our current position to the end position
+ point = self._simplify_point(slot.end)
+ self._pos = slot.end
+ self.body.append(CoordinateStmt.from_point(point, mode="LINEAR"))
+
+ self.drill_mode = ExcellonContext.MODE_SLOT
+
+ else:
+ # This is a G85 slot, so do this in normally drilling mode
+ if self.drill_mode != ExcellonContext.MODE_DRILL:
+ self._start_drill_mode()
+
+ # Slots don't use simplified points
+ self._pos = slot.end
+ self.body.append(SlotStmt.from_points(slot.start, slot.end))
+
+ def _render_inverted_layer(self):
+ pass
+ \ No newline at end of file
diff --git a/gerber/render/render.py b/gerber/render/render.py
index 724aaea..79f43d6 100644
--- a/gerber/render/render.py
+++ b/gerber/render/render.py
@@ -65,7 +65,7 @@ class GerberContext(object):
self._background_color = (0.0, 0.0, 0.0)
self._drill_color = (0.0, 0.0, 0.0)
self._alpha = 1.0
- self.invert = False
+ self._invert = False
self.ctx = None
@property
@@ -127,7 +127,20 @@ class GerberContext(object):
raise ValueError('Alpha must be between 0.0 and 1.0')
self._alpha = alpha
+ @property
+ def invert(self):
+ return self._invert
+
+ @invert.setter
+ def invert(self, invert):
+ self._invert = invert
+
def render(self, primitive):
+ if not primitive:
+ return
+
+ self._pre_render_primitive(primitive)
+
color = self.color
if isinstance(primitive, Line):
self._render_line(primitive, color)
@@ -144,11 +157,32 @@ class GerberContext(object):
elif isinstance(primitive, Polygon):
self._render_polygon(primitive, color)
elif isinstance(primitive, Drill):
- self._render_drill(primitive, color)
+ self._render_drill(primitive, self.color)
+ elif isinstance(primitive, Slot):
+ self._render_slot(primitive, self.color)
+ elif isinstance(primitive, AMGroup):
+ self._render_amgroup(primitive, color)
+ elif isinstance(primitive, Outline):
+ self._render_region(primitive, color)
elif isinstance(primitive, TestRecord):
self._render_test_record(primitive, color)
- else:
- return
+
+ self._post_render_primitive(primitive)
+
+ def _pre_render_primitive(self, primitive):
+ """
+ Called before rendering a primitive. Use the callback to perform some action before rendering
+ a primitive, for example adding a comment.
+ """
+ return
+
+ def _post_render_primitive(self, primitive):
+ """
+ Called after rendering a primitive. Use the callback to perform some action after rendering
+ a primitive
+ """
+ return
+
def _render_line(self, primitive, color):
pass
@@ -174,6 +208,12 @@ class GerberContext(object):
def _render_drill(self, primitive, color):
pass
+ def _render_slot(self, primitive, color):
+ pass
+
+ def _render_amgroup(self, primitive, color):
+ pass
+
def _render_test_record(self, primitive, color):
pass
diff --git a/gerber/render/rs274x_backend.py b/gerber/render/rs274x_backend.py
new file mode 100644
index 0000000..13e871c
--- /dev/null
+++ b/gerber/render/rs274x_backend.py
@@ -0,0 +1,494 @@
+"""Renders an in-memory Gerber file to statements which can be written to a string
+"""
+from copy import deepcopy
+
+try:
+ from cStringIO import StringIO
+except(ImportError):
+ from io import StringIO
+
+from .render import GerberContext
+from ..am_statements import *
+from ..gerber_statements import *
+from ..primitives import AMGroup, Arc, Circle, Line, Obround, Outline, Polygon, Rectangle
+
+
+class AMGroupContext(object):
+ '''A special renderer to generate aperature macros from an AMGroup'''
+
+ def __init__(self):
+ self.statements = []
+
+ def render(self, amgroup, name):
+
+ if amgroup.stmt:
+ # We know the statement it was generated from, so use that to create the AMParamStmt
+ # It will give a much better result
+
+ stmt = deepcopy(amgroup.stmt)
+ stmt.name = name
+
+ return stmt
+
+ else:
+ # Clone ourselves, then offset by the psotion so that
+ # our render doesn't have to consider offset. Just makes things simpler
+ nooffset_group = deepcopy(amgroup)
+ nooffset_group.position = (0, 0)
+
+ # Now draw the shapes
+ for primitive in nooffset_group.primitives:
+ if isinstance(primitive, Outline):
+ self._render_outline(primitive)
+ elif isinstance(primitive, Circle):
+ self._render_circle(primitive)
+ elif isinstance(primitive, Rectangle):
+ self._render_rectangle(primitive)
+ elif isinstance(primitive, Line):
+ self._render_line(primitive)
+ elif isinstance(primitive, Polygon):
+ self._render_polygon(primitive)
+ else:
+ raise ValueError('amgroup')
+
+ statement = AMParamStmt('AM', name, self._statements_to_string())
+ return statement
+
+ def _statements_to_string(self):
+ macro = ''
+
+ for statement in self.statements:
+ macro += statement.to_gerber()
+
+ return macro
+
+ def _render_circle(self, circle):
+ self.statements.append(AMCirclePrimitive.from_primitive(circle))
+
+ def _render_rectangle(self, rectangle):
+ self.statements.append(AMCenterLinePrimitive.from_primitive(rectangle))
+
+ def _render_line(self, line):
+ self.statements.append(AMVectorLinePrimitive.from_primitive(line))
+
+ def _render_outline(self, outline):
+ self.statements.append(AMOutlinePrimitive.from_primitive(outline))
+
+ def _render_polygon(self, polygon):
+ self.statements.append(AMPolygonPrimitive.from_primitive(polygon))
+
+ def _render_thermal(self, thermal):
+ pass
+
+
+class Rs274xContext(GerberContext):
+
+ def __init__(self, settings):
+ GerberContext.__init__(self)
+ self.comments = []
+ self.header = []
+ self.body = []
+ self.end = [EofStmt()]
+
+ # Current values so we know if we have to execute
+ # moves, levey changes before anything else
+ self._level_polarity = None
+ self._pos = (None, None)
+ self._func = None
+ self._quadrant_mode = None
+ self._dcode = None
+
+ # Primarily for testing and comarison to files, should we write
+ # flashes as a single statement or a move plus flash? Set to true
+ # to do in a single statement. Normally this can be false
+ self.condensed_flash = True
+
+ # When closing a region, force a D02 staement to close a region.
+ # This is normally not necessary because regions are closed with a G37
+ # staement, but this will add an extra statement for doubly close
+ # the region
+ self.explicit_region_move_end = False
+
+ self._next_dcode = 10
+ self._rects = {}
+ self._circles = {}
+ self._obrounds = {}
+ self._polygons = {}
+ self._macros = {}
+
+ self._i_none = 0
+ self._j_none = 0
+
+ self.settings = settings
+
+ self._start_header(settings)
+
+ def _start_header(self, settings):
+ self.header.append(FSParamStmt.from_settings(settings))
+ self.header.append(MOParamStmt.from_units(settings.units))
+
+ def _simplify_point(self, point):
+ return (point[0] if point[0] != self._pos[0] else None, point[1] if point[1] != self._pos[1] else None)
+
+ def _simplify_offset(self, point, offset):
+
+ if point[0] != offset[0]:
+ xoffset = point[0] - offset[0]
+ else:
+ xoffset = self._i_none
+
+ if point[1] != offset[1]:
+ yoffset = point[1] - offset[1]
+ else:
+ yoffset = self._j_none
+
+ return (xoffset, yoffset)
+
+ @property
+ def statements(self):
+ return self.comments + self.header + self.body + self.end
+
+ def set_bounds(self, bounds):
+ pass
+
+ def _paint_background(self):
+ pass
+
+ def _select_aperture(self, aperture):
+
+ # Select the right aperture if not already selected
+ if aperture:
+ if isinstance(aperture, Circle):
+ aper = self._get_circle(aperture.diameter, aperture.hole_diameter)
+ elif isinstance(aperture, Rectangle):
+ aper = self._get_rectangle(aperture.width, aperture.height)
+ elif isinstance(aperture, Obround):
+ aper = self._get_obround(aperture.width, aperture.height)
+ elif isinstance(aperture, AMGroup):
+ aper = self._get_amacro(aperture)
+ else:
+ raise NotImplementedError('Line with invalid aperture type')
+
+ if aper.d != self._dcode:
+ self.body.append(ApertureStmt(aper.d))
+ self._dcode = aper.d
+
+ def _pre_render_primitive(self, primitive):
+
+ if hasattr(primitive, 'comment'):
+ self.body.append(CommentStmt(primitive.comment))
+
+ def _render_line(self, line, color):
+
+ self._select_aperture(line.aperture)
+
+ self._render_level_polarity(line)
+
+ # Get the right function
+ if self._func != CoordStmt.FUNC_LINEAR:
+ func = CoordStmt.FUNC_LINEAR
+ else:
+ func = None
+ self._func = CoordStmt.FUNC_LINEAR
+
+ if self._pos != line.start:
+ self.body.append(CoordStmt.move(func, self._simplify_point(line.start)))
+ self._pos = line.start
+ # We already set the function, so the next command doesn't require that
+ func = None
+
+ point = self._simplify_point(line.end)
+
+ # In some files, we see a lot of duplicated ponts, so omit those
+ if point[0] != None or point[1] != None:
+ self.body.append(CoordStmt.line(func, self._simplify_point(line.end)))
+ self._pos = line.end
+ elif func:
+ self.body.append(CoordStmt.mode(func))
+
+ def _render_arc(self, arc, color):
+
+ # Optionally set the quadrant mode if it has changed:
+ if arc.quadrant_mode != self._quadrant_mode:
+
+ if arc.quadrant_mode != 'multi-quadrant':
+ self.body.append(QuadrantModeStmt.single())
+ else:
+ self.body.append(QuadrantModeStmt.multi())
+
+ self._quadrant_mode = arc.quadrant_mode
+
+ # Select the right aperture if not already selected
+ self._select_aperture(arc.aperture)
+
+ self._render_level_polarity(arc)
+
+ # Find the right movement mode. Always set to be sure it is really right
+ dir = arc.direction
+ if dir == 'clockwise':
+ func = CoordStmt.FUNC_ARC_CW
+ self._func = CoordStmt.FUNC_ARC_CW
+ elif dir == 'counterclockwise':
+ func = CoordStmt.FUNC_ARC_CCW
+ self._func = CoordStmt.FUNC_ARC_CCW
+ else:
+ raise ValueError('Invalid circular interpolation mode')
+
+ if self._pos != arc.start:
+ # TODO I'm not sure if this is right
+ self.body.append(CoordStmt.move(CoordStmt.FUNC_LINEAR, self._simplify_point(arc.start)))
+ self._pos = arc.start
+
+ center = self._simplify_offset(arc.center, arc.start)
+ end = self._simplify_point(arc.end)
+ self.body.append(CoordStmt.arc(func, end, center))
+ self._pos = arc.end
+
+ def _render_region(self, region, color):
+
+ self._render_level_polarity(region)
+
+ self.body.append(RegionModeStmt.on())
+
+ for p in region.primitives:
+
+ if isinstance(p, Line):
+ self._render_line(p, color)
+ else:
+ self._render_arc(p, color)
+
+ if self.explicit_region_move_end:
+ self.body.append(CoordStmt.move(None, None))
+
+ self.body.append(RegionModeStmt.off())
+
+ def _render_level_polarity(self, region):
+ if region.level_polarity != self._level_polarity:
+ self._level_polarity = region.level_polarity
+ self.body.append(LPParamStmt.from_region(region))
+
+ def _render_flash(self, primitive, aperture):
+
+ self._render_level_polarity(primitive)
+
+ if aperture.d != self._dcode:
+ self.body.append(ApertureStmt(aperture.d))
+ self._dcode = aperture.d
+
+ if self.condensed_flash:
+ self.body.append(CoordStmt.flash(self._simplify_point(primitive.position)))
+ else:
+ self.body.append(CoordStmt.move(None, self._simplify_point(primitive.position)))
+ self.body.append(CoordStmt.flash(None))
+
+ self._pos = primitive.position
+
+ def _get_circle(self, diameter, hole_diameter, dcode = None):
+ '''Define a circlar aperture'''
+
+ aper = self._circles.get((diameter, hole_diameter), None)
+
+ if not aper:
+ if not dcode:
+ dcode = self._next_dcode
+ self._next_dcode += 1
+ else:
+ self._next_dcode = max(dcode + 1, self._next_dcode)
+
+ aper = ADParamStmt.circle(dcode, diameter, hole_diameter)
+ self._circles[(diameter, hole_diameter)] = aper
+ self.header.append(aper)
+
+ return aper
+
+ def _render_circle(self, circle, color):
+
+ aper = self._get_circle(circle.diameter, circle.hole_diameter)
+ self._render_flash(circle, aper)
+
+ def _get_rectangle(self, width, height, dcode = None):
+ '''Get a rectanglar aperture. If it isn't defined, create it'''
+
+ key = (width, height)
+ aper = self._rects.get(key, None)
+
+ if not aper:
+ if not dcode:
+ dcode = self._next_dcode
+ self._next_dcode += 1
+ else:
+ self._next_dcode = max(dcode + 1, self._next_dcode)
+
+ aper = ADParamStmt.rect(dcode, width, height)
+ self._rects[(width, height)] = aper
+ self.header.append(aper)
+
+ return aper
+
+ def _render_rectangle(self, rectangle, color):
+
+ aper = self._get_rectangle(rectangle.width, rectangle.height)
+ self._render_flash(rectangle, aper)
+
+ def _get_obround(self, width, height, dcode = None):
+
+ key = (width, height)
+ aper = self._obrounds.get(key, None)
+
+ if not aper:
+ if not dcode:
+ dcode = self._next_dcode
+ self._next_dcode += 1
+ else:
+ self._next_dcode = max(dcode + 1, self._next_dcode)
+
+ aper = ADParamStmt.obround(dcode, width, height)
+ self._obrounds[key] = aper
+ self.header.append(aper)
+
+ return aper
+
+ def _render_obround(self, obround, color):
+
+ aper = self._get_obround(obround.width, obround.height)
+ self._render_flash(obround, aper)
+
+ def _render_polygon(self, polygon, color):
+
+ aper = self._get_polygon(polygon.radius, polygon.sides, polygon.rotation, polygon.hole_radius)
+ self._render_flash(polygon, aper)
+
+ def _get_polygon(self, radius, num_vertices, rotation, hole_radius, dcode = None):
+
+ key = (radius, num_vertices, rotation, hole_radius)
+ aper = self._polygons.get(key, None)
+
+ if not aper:
+ if not dcode:
+ dcode = self._next_dcode
+ self._next_dcode += 1
+ else:
+ self._next_dcode = max(dcode + 1, self._next_dcode)
+
+ aper = ADParamStmt.polygon(dcode, radius * 2, num_vertices, rotation, hole_radius * 2)
+ self._polygons[key] = aper
+ self.header.append(aper)
+
+ return aper
+
+ def _render_drill(self, drill, color):
+ raise ValueError('Drills are not valid in RS274X files')
+
+ def _hash_amacro(self, amgroup):
+ '''Calculate a very quick hash code for deciding if we should even check AM groups for comparision'''
+
+ # We always start with an X because this forms part of the name
+ # Basically, in some cases, the name might start with a C, R, etc. That can appear
+ # to conflict with normal aperture definitions. Technically, it shouldn't because normal
+ # aperture definitions should have a comma, but in some cases the commit is omitted
+ hash = 'X'
+ for primitive in amgroup.primitives:
+
+ hash += primitive.__class__.__name__[0]
+
+ bbox = primitive.bounding_box
+ hash += str((bbox[0][1] - bbox[0][0]) * 100000)[0:2]
+ hash += str((bbox[1][1] - bbox[1][0]) * 100000)[0:2]
+
+ if hasattr(primitive, 'primitives'):
+ hash += str(len(primitive.primitives))
+
+ if isinstance(primitive, Rectangle):
+ hash += str(primitive.width * 1000000)[0:2]
+ hash += str(primitive.height * 1000000)[0:2]
+ elif isinstance(primitive, Circle):
+ hash += str(primitive.diameter * 1000000)[0:2]
+
+ if len(hash) > 20:
+ # The hash might actually get quite complex, so stop before
+ # it gets too long
+ break
+
+ return hash
+
+ def _get_amacro(self, amgroup, dcode = None):
+ # Macros are a little special since we don't have a good way to compare them quickly
+ # but in most cases, this should work
+
+ hash = self._hash_amacro(amgroup)
+ macro = None
+ macroinfo = self._macros.get(hash, None)
+
+ if macroinfo:
+
+ # We have a definition, but check that the groups actually are the same
+ for macro in macroinfo:
+
+ # Macros should have positions, right? But if the macro is selected for non-flashes
+ # then it won't have a position. This is of course a bad gerber, but they do exist
+ if amgroup.position:
+ position = amgroup.position
+ else:
+ position = (0, 0)
+
+ offset = (position[0] - macro[1].position[0], position[1] - macro[1].position[1])
+ if amgroup.equivalent(macro[1], offset):
+ break
+ macro = None
+
+ # Did we find one in the group0
+ if not macro:
+ # This is a new macro, so define it
+ if not dcode:
+ dcode = self._next_dcode
+ self._next_dcode += 1
+ else:
+ self._next_dcode = max(dcode + 1, self._next_dcode)
+
+ # Create the statements
+ # TODO
+ amrenderer = AMGroupContext()
+ statement = amrenderer.render(amgroup, hash)
+
+ self.header.append(statement)
+
+ aperdef = ADParamStmt.macro(dcode, hash)
+ self.header.append(aperdef)
+
+ # Store the dcode and the original so we can check if it really is the same
+ # If it didn't have a postition, set it to 0, 0
+ if amgroup.position == None:
+ amgroup.position = (0, 0)
+ macro = (aperdef, amgroup)
+
+ if macroinfo:
+ macroinfo.append(macro)
+ else:
+ self._macros[hash] = [macro]
+
+ return macro[0]
+
+ def _render_amgroup(self, amgroup, color):
+
+ aper = self._get_amacro(amgroup)
+ self._render_flash(amgroup, aper)
+
+ def _render_inverted_layer(self):
+ pass
+
+ def _new_render_layer(self):
+ # TODO Might need to implement this
+ pass
+
+ def _flatten(self):
+ # TODO Might need to implement this
+ pass
+
+ def dump(self):
+ """Write the rendered file to a StringIO steam"""
+ statements = map(lambda stmt: stmt.to_gerber(self.settings), self.statements)
+ stream = StringIO()
+ for statement in statements:
+ stream.write(statement + '\n')
+
+ return stream