summaryrefslogtreecommitdiff
path: root/gerber/primitives.py
diff options
context:
space:
mode:
authorHamilton Kibbe <hamilton.kibbe@gmail.com>2016-01-21 03:57:44 -0500
committerHamilton Kibbe <hamilton.kibbe@gmail.com>2016-01-21 03:57:44 -0500
commit5476da8aa3f4ee424f56f4f2491e7af1c4b7b758 (patch)
tree427dafda78ee21a1846a2b9c9747dd96afe7e8a3 /gerber/primitives.py
parent7a532514631384dbfc9d7fc2002cbbfe52433c9f (diff)
downloadgerbonara-5476da8aa3f4ee424f56f4f2491e7af1c4b7b758.tar.gz
gerbonara-5476da8aa3f4ee424f56f4f2491e7af1c4b7b758.tar.bz2
gerbonara-5476da8aa3f4ee424f56f4f2491e7af1c4b7b758.zip
Fix a bunch of rendering bugs.
- 'clear' polarity primitives no longer erase background - Added aperture macro support for polygons - Added aperture macro rendring support - Renderer now creates a new surface for each layer and merges them instead of working directly on a single surface - Updated examples accordingly
Diffstat (limited to 'gerber/primitives.py')
-rw-r--r--gerber/primitives.py1077
1 files changed, 723 insertions, 354 deletions
diff --git a/gerber/primitives.py b/gerber/primitives.py
index 0ac12af..24e13a2 100644
--- a/gerber/primitives.py
+++ b/gerber/primitives.py
@@ -1,7 +1,7 @@
#! /usr/bin/env python
# -*- coding: utf-8 -*-
-# copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>
+# copyright 2016 Hamilton Kibbe <ham@hamiltonkib.be>
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -14,10 +14,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
+
+
import math
-from operator import add, sub
+from operator import add
+from itertools import combinations
-from .utils import validate_coordinates, inch, metric
+from .utils import validate_coordinates, inch, metric, convex_hull
class Primitive(object):
@@ -35,17 +38,65 @@ class Primitive(object):
rotation : float
Rotation of a primitive about its origin in degrees. Positive rotation
is counter-clockwise as viewed from the board top.
+
+ units : string
+ Units in which primitive was defined. 'inch' or 'metric'
+
+ net_name : string
+ Name of the electrical net the primitive belongs to
"""
- def __init__(self, level_polarity='dark', rotation=0, units=None, id=None, statement_id=None):
+
+ def __init__(self, level_polarity='dark', rotation=0, units=None, net_name=None):
self.level_polarity = level_polarity
- self.rotation = rotation
- self.units = units
+ self.net_name = net_name
self._to_convert = list()
- self.id = id
- self.statement_id = statement_id
+ self._memoized = list()
+ self._units = units
+ self._rotation = rotation
+ self._cos_theta = math.cos(math.radians(rotation))
+ self._sin_theta = math.sin(math.radians(rotation))
+ self._bounding_box = None
+ self._vertices = None
+ self._segments = None
+
+ def __eq__(self, other):
+ return self.__dict__ == other.__dict__
+
+ @property
+ def units(self):
+ return self._units
+
+ @units.setter
+ def units(self, value):
+ self._changed()
+ self._units = value
+
+ @property
+ def rotation(self):
+ return self._rotation
+ @rotation.setter
+ def rotation(self, value):
+ self._changed()
+ self._rotation = value
+ self._cos_theta = math.cos(math.radians(value))
+ self._sin_theta = math.sin(math.radians(value))
+
+ @property
+ def vertices(self):
+ return None
+
+ @property
+ def segments(self):
+ if self._segments is None:
+ if self.vertices is not None and len(self.vertices):
+ self._segments = [segment for segment in
+ combinations(self.vertices, 2)]
+ return self._segments
+
+ @property
def bounding_box(self):
- """ Calculate bounding box
+ """ Calculate axis-aligned bounding box
will be helpful for sweep & prune during DRC clearance checks.
@@ -55,9 +106,12 @@ class Primitive(object):
'implemented in subclass')
def to_inch(self):
+ """ Convert primitive units to inches.
+ """
if self.units == 'metric':
self.units = 'inch'
- for attr, value in [(attr, getattr(self, attr)) for attr in self._to_convert]:
+ for attr, value in [(attr, getattr(self, attr))
+ for attr in self._to_convert]:
if hasattr(value, 'to_inch'):
value.to_inch()
else:
@@ -67,18 +121,22 @@ class Primitive(object):
for v in value:
v.to_inch()
elif isinstance(value[0], tuple):
- setattr(self, attr, [tuple(map(inch, point)) for point in value])
+ setattr(self, attr,
+ [tuple(map(inch, point))
+ for point in value])
else:
setattr(self, attr, tuple(map(inch, value)))
except:
if value is not None:
setattr(self, attr, inch(value))
-
def to_metric(self):
+ """ Convert primitive units to metric.
+ """
if self.units == 'inch':
self.units = 'metric'
- for attr, value in [(attr, getattr(self, attr)) for attr in self._to_convert]:
+ for attr, value in [(attr, getattr(self, attr))
+ for attr in self._to_convert]:
if hasattr(value, 'to_metric'):
value.to_metric()
else:
@@ -88,7 +146,9 @@ class Primitive(object):
for v in value:
v.to_metric()
elif isinstance(value[0], tuple):
- setattr(self, attr, [tuple(map(metric, point)) for point in value])
+ setattr(self, attr,
+ [tuple(map(metric, point))
+ for point in value])
else:
setattr(self, attr, tuple(map(metric, value)))
except:
@@ -96,120 +156,173 @@ class Primitive(object):
setattr(self, attr, metric(value))
def offset(self, x_offset=0, y_offset=0):
- pass
+ """ Move the primitive by the specified x and y offset amount.
- def __eq__(self, other):
- return self.__dict__ == other.__dict__
+ values are specified in the primitive's native units
+ """
+ if hasattr(self, 'position'):
+ self._changed()
+ self.position = tuple([coord + offset for coord, offset
+ in zip(self.position,
+ (x_offset, y_offset))])
+
+
+ def _changed(self):
+ """ Clear memoized properties.
+
+ Forces a recalculation next time any memoized propery is queried.
+ This must be called from a subclass every time a parameter that affects
+ a memoized property is changed. The easiest way to do this is to call
+ _changed() from property.setter methods.
+ """
+ self._bounding_box = None
+ self._vertices = None
+ self._segments = None
+ for attr in self._memoized:
+ setattr(self, attr, None)
class Line(Primitive):
"""
"""
+
def __init__(self, start, end, aperture, **kwargs):
super(Line, self).__init__(**kwargs)
- self.start = start
- self.end = end
+ self._start = start
+ self._end = end
self.aperture = aperture
self._to_convert = ['start', 'end', 'aperture']
@property
+ def start(self):
+ return self._start
+
+ @start.setter
+ def start(self, value):
+ self._changed()
+ self._start = value
+
+ @property
+ def end(self):
+ return self._end
+
+ @end.setter
+ def end(self, value):
+ self._changed()
+ self._end = value
+
+
+ @property
def angle(self):
- delta_x, delta_y = tuple(map(sub, self.end, self.start))
+ delta_x, delta_y = tuple(
+ [end - start for end, start in zip(self.end, self.start)])
angle = math.atan2(delta_y, delta_x)
return angle
@property
def bounding_box(self):
- if isinstance(self.aperture, Circle):
- width_2 = self.aperture.radius
- height_2 = width_2
- else:
- width_2 = self.aperture.width / 2.
- height_2 = self.aperture.height / 2.
- min_x = min(self.start[0], self.end[0]) - width_2
- max_x = max(self.start[0], self.end[0]) + width_2
- min_y = min(self.start[1], self.end[1]) - height_2
- max_y = max(self.start[1], self.end[1]) + height_2
- return ((min_x, max_x), (min_y, max_y))
+ if self._bounding_box is None:
+ if isinstance(self.aperture, Circle):
+ width_2 = self.aperture.radius
+ height_2 = width_2
+ else:
+ width_2 = self.aperture.width / 2.
+ height_2 = self.aperture.height / 2.
+ min_x = min(self.start[0], self.end[0]) - width_2
+ max_x = max(self.start[0], self.end[0]) + width_2
+ min_y = min(self.start[1], self.end[1]) - height_2
+ max_y = max(self.start[1], self.end[1]) + height_2
+ self._bounding_box = ((min_x, max_x), (min_y, max_y))
+ return self._bounding_box
+
@property
def vertices(self):
- if not isinstance(self.aperture, Rectangle):
- return None
- else:
- start = self.start
- end = self.end
- width = self.aperture.width
- height = self.aperture.height
-
- # Find all the corners of the start and end position
- start_ll = (start[0] - (width / 2.),
- start[1] - (height / 2.))
- start_lr = (start[0] + (width / 2.),
- start[1] - (height / 2.))
- start_ul = (start[0] - (width / 2.),
- start[1] + (height / 2.))
- start_ur = (start[0] + (width / 2.),
- start[1] + (height / 2.))
- end_ll = (end[0] - (width / 2.),
- end[1] - (height / 2.))
- end_lr = (end[0] + (width / 2.),
- end[1] - (height / 2.))
- end_ul = (end[0] - (width / 2.),
- end[1] + (height / 2.))
- end_ur = (end[0] + (width / 2.),
- end[1] + (height / 2.))
-
- if end[0] == start[0] and end[1] == start[1]:
- return (start_ll, start_lr, start_ur, start_ul)
- elif end[0] == start[0] and end[1] > start[1]:
- return (start_ll, start_lr, end_ur, end_ul)
- elif end[0] > start[0] and end[1] > start[1]:
- return (start_ll, start_lr, end_lr, end_ur, end_ul, start_ul)
- elif end[0] > start[0] and end[1] == start[1]:
- return (start_ll, end_lr, end_ur, start_ul)
- elif end[0] > start[0] and end[1] < start[1]:
- return (start_ll, end_ll, end_lr, end_ur, start_ur, start_ul)
- elif end[0] == start[0] and end[1] < start[1]:
- return (end_ll, end_lr, start_ur, start_ul)
- elif end[0] < start[0] and end[1] < start[1]:
- return (end_ll, end_lr, start_lr, start_ur, start_ul, end_ul)
- elif end[0] < start[0] and end[1] == start[1]:
- return (end_ll, start_lr, start_ur, end_ul)
- elif end[0] < start[0] and end[1] > start[1]:
- return (start_ll, start_lr, start_ur, end_ur, end_ul, end_ll)
-
+ if self._vertices is None:
+ if isinstance(self.aperture, Rectangle):
+ start = self.start
+ end = self.end
+ width = self.aperture.width
+ height = self.aperture.height
+
+ # Find all the corners of the start and end position
+ start_ll = (start[0] - (width / 2.), start[1] - (height / 2.))
+ start_lr = (start[0] + (width / 2.), start[1] - (height / 2.))
+ start_ul = (start[0] - (width / 2.), start[1] + (height / 2.))
+ start_ur = (start[0] + (width / 2.), start[1] + (height / 2.))
+ end_ll = (end[0] - (width / 2.), end[1] - (height / 2.))
+ end_lr = (end[0] + (width / 2.), end[1] - (height / 2.))
+ end_ul = (end[0] - (width / 2.), end[1] + (height / 2.))
+ end_ur = (end[0] + (width / 2.), end[1] + (height / 2.))
+
+ # The line is defined by the convex hull of the points
+ self._vertices = convex_hull((start_ll, start_lr, start_ul, start_ur, end_ll, end_lr, end_ul, end_ur))
+ return self._vertices
def offset(self, x_offset=0, y_offset=0):
- self.start = tuple(map(add, self.start, (x_offset, y_offset)))
- self.end = tuple(map(add, self.end, (x_offset, y_offset)))
+ self._changed()
+ self.start = tuple([coord + offset for coord, offset
+ in zip(self.start, (x_offset, y_offset))])
+ self.end = tuple([coord + offset for coord, offset
+ in zip(self.end, (x_offset, y_offset))])
class Arc(Primitive):
"""
"""
+
def __init__(self, start, end, center, direction, aperture, **kwargs):
super(Arc, self).__init__(**kwargs)
- self.start = start
- self.end = end
- self.center = center
+ self._start = start
+ self._end = end
+ self._center = center
self.direction = direction
self.aperture = aperture
self._to_convert = ['start', 'end', 'center', 'aperture']
@property
+ def start(self):
+ return self._start
+
+ @start.setter
+ def start(self, value):
+ self._changed()
+ self._start = value
+
+ @property
+ def end(self):
+ return self._end
+
+ @end.setter
+ def end(self, value):
+ self._changed()
+ self._end = value
+
+ @property
+ def center(self):
+ return self._center
+
+ @center.setter
+ def center(self, value):
+ self._changed()
+ self._center = value
+
+ @property
def radius(self):
- dy, dx = map(sub, self.start, self.center)
- return math.sqrt(dy**2 + dx**2)
+ dy, dx = tuple([start - center for start, center
+ in zip(self.start, self.center)])
+ return math.sqrt(dy ** 2 + dx ** 2)
@property
def start_angle(self):
- dy, dx = map(sub, self.start, self.center)
+ dy, dx = tuple([start - center for start, center
+ in zip(self.start, self.center)])
return math.atan2(dx, dy)
@property
def end_angle(self):
- dy, dx = map(sub, self.end, self.center)
+ dy, dx = tuple([end - center for end, center
+ in zip(self.end, self.center)])
return math.atan2(dx, dy)
@property
@@ -225,44 +338,51 @@ class Arc(Primitive):
@property
def bounding_box(self):
- two_pi = 2 * math.pi
- theta0 = (self.start_angle + two_pi) % two_pi
- theta1 = (self.end_angle + two_pi) % two_pi
- points = [self.start, self.end]
- if self.direction == 'counterclockwise':
- # Passes through 0 degrees
- if theta0 > theta1:
- points.append((self.center[0] + self.radius, self.center[1]))
- # Passes through 90 degrees
- if theta0 <= math.pi / 2. and (theta1 >= math.pi / 2. or theta1 < theta0):
- points.append((self.center[0], self.center[1] + self.radius))
- # Passes through 180 degrees
- if theta0 <= math.pi and (theta1 >= math.pi or theta1 < theta0):
- points.append((self.center[0] - self.radius, self.center[1]))
- # Passes through 270 degrees
- if theta0 <= math.pi * 1.5 and (theta1 >= math.pi * 1.5 or theta1 < theta0):
- points.append((self.center[0], self.center[1] - self.radius ))
- else:
- # Passes through 0 degrees
- if theta1 > theta0:
- points.append((self.center[0] + self.radius, self.center[1]))
- # Passes through 90 degrees
- if theta1 <= math.pi / 2. and (theta0 >= math.pi / 2. or theta0 < theta1):
- points.append((self.center[0], self.center[1] + self.radius))
- # Passes through 180 degrees
- if theta1 <= math.pi and (theta0 >= math.pi or theta0 < theta1):
- points.append((self.center[0] - self.radius, self.center[1]))
- # Passes through 270 degrees
- if theta1 <= math.pi * 1.5 and (theta0 >= math.pi * 1.5 or theta0 < theta1):
- points.append((self.center[0], self.center[1] - self.radius ))
- x, y = zip(*points)
- min_x = min(x) - self.aperture.radius
- max_x = max(x) + self.aperture.radius
- min_y = min(y) - self.aperture.radius
- max_y = max(y) + self.aperture.radius
- return ((min_x, max_x), (min_y, max_y))
+ if self._bounding_box is None:
+ two_pi = 2 * math.pi
+ theta0 = (self.start_angle + two_pi) % two_pi
+ theta1 = (self.end_angle + two_pi) % two_pi
+ points = [self.start, self.end]
+ if self.direction == 'counterclockwise':
+ # Passes through 0 degrees
+ if theta0 > theta1:
+ points.append((self.center[0] + self.radius, self.center[1]))
+ # Passes through 90 degrees
+ if theta0 <= math.pi / \
+ 2. and (theta1 >= math.pi / 2. or theta1 < theta0):
+ points.append((self.center[0], self.center[1] + self.radius))
+ # Passes through 180 degrees
+ if theta0 <= math.pi and (theta1 >= math.pi or theta1 < theta0):
+ points.append((self.center[0] - self.radius, self.center[1]))
+ # Passes through 270 degrees
+ if theta0 <= math.pi * \
+ 1.5 and (theta1 >= math.pi * 1.5 or theta1 < theta0):
+ points.append((self.center[0], self.center[1] - self.radius))
+ else:
+ # Passes through 0 degrees
+ if theta1 > theta0:
+ points.append((self.center[0] + self.radius, self.center[1]))
+ # Passes through 90 degrees
+ if theta1 <= math.pi / \
+ 2. and (theta0 >= math.pi / 2. or theta0 < theta1):
+ points.append((self.center[0], self.center[1] + self.radius))
+ # Passes through 180 degrees
+ if theta1 <= math.pi and (theta0 >= math.pi or theta0 < theta1):
+ points.append((self.center[0] - self.radius, self.center[1]))
+ # Passes through 270 degrees
+ if theta1 <= math.pi * \
+ 1.5 and (theta0 >= math.pi * 1.5 or theta0 < theta1):
+ points.append((self.center[0], self.center[1] - self.radius))
+ x, y = zip(*points)
+ min_x = min(x) - self.aperture.radius
+ max_x = max(x) + self.aperture.radius
+ min_y = min(y) - self.aperture.radius
+ max_y = max(y) + self.aperture.radius
+ self._bounding_box = ((min_x, max_x), (min_y, max_y))
+ return self._bounding_box
def offset(self, x_offset=0, y_offset=0):
+ self._changed()
self.start = tuple(map(add, self.start, (x_offset, y_offset)))
self.end = tuple(map(add, self.end, (x_offset, y_offset)))
self.center = tuple(map(add, self.center, (x_offset, y_offset)))
@@ -271,256 +391,465 @@ class Arc(Primitive):
class Circle(Primitive):
"""
"""
+
def __init__(self, position, diameter, **kwargs):
super(Circle, self).__init__(**kwargs)
validate_coordinates(position)
- self.position = position
- self.diameter = diameter
+ self._position = position
+ self._diameter = diameter
self._to_convert = ['position', 'diameter']
@property
+ def position(self):
+ return self._position
+
+ @position.setter
+ def position(self, value):
+ self._changed()
+ self._position = value
+
+ @property
+ def diameter(self):
+ return self._diameter
+
+ @diameter.setter
+ def diameter(self, value):
+ self._changed()
+ self._diameter = value
+
+ @property
def radius(self):
return self.diameter / 2.
@property
def bounding_box(self):
- min_x = self.position[0] - self.radius
- max_x = self.position[0] + self.radius
- min_y = self.position[1] - self.radius
- max_y = self.position[1] + self.radius
- return ((min_x, max_x), (min_y, max_y))
-
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+ if self._bounding_box is None:
+ min_x = self.position[0] - self.radius
+ max_x = self.position[0] + self.radius
+ min_y = self.position[1] - self.radius
+ max_y = self.position[1] + self.radius
+ self._bounding_box = ((min_x, max_x), (min_y, max_y))
+ return self._bounding_box
class Ellipse(Primitive):
"""
"""
+
def __init__(self, position, width, height, **kwargs):
super(Ellipse, self).__init__(**kwargs)
validate_coordinates(position)
- self.position = position
- self.width = width
- self.height = height
+ self._position = position
+ self._width = width
+ self._height = height
self._to_convert = ['position', 'width', 'height']
+ @property
+ def position(self):
+ return self._position
+
+ @position.setter
+ def position(self, value):
+ self._changed()
+ self._position = value
@property
- def bounding_box(self):
- min_x = self.position[0] - (self._abs_width / 2.0)
- max_x = self.position[0] + (self._abs_width / 2.0)
- min_y = self.position[1] - (self._abs_height / 2.0)
- max_y = self.position[1] + (self._abs_height / 2.0)
- return ((min_x, max_x), (min_y, max_y))
+ def width(self):
+ return self._width
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+ @width.setter
+ def width(self, value):
+ self._changed()
+ self._width = value
+
+ @property
+ def height(self):
+ return self._height
+
+ @height.setter
+ def height(self, value):
+ self._changed()
+ self._height = value
+
+ @property
+ def bounding_box(self):
+ if self._bounding_box is None:
+ min_x = self.position[0] - (self.axis_aligned_width / 2.0)
+ max_x = self.position[0] + (self.axis_aligned_width / 2.0)
+ min_y = self.position[1] - (self.axis_aligned_height / 2.0)
+ max_y = self.position[1] + (self.axis_aligned_height / 2.0)
+ self._bounding_box = ((min_x, max_x), (min_y, max_y))
+ return self._bounding_box
@property
- def _abs_width(self):
+ def axis_aligned_width(self):
ux = (self.width / 2.) * math.cos(math.radians(self.rotation))
- vx = (self.height / 2.) * math.cos(math.radians(self.rotation) + (math.pi / 2.))
+ vx = (self.height / 2.) * \
+ math.cos(math.radians(self.rotation) + (math.pi / 2.))
return 2 * math.sqrt((ux * ux) + (vx * vx))
-
+
@property
- def _abs_height(self):
+ def axis_aligned_height(self):
uy = (self.width / 2.) * math.sin(math.radians(self.rotation))
- vy = (self.height / 2.) * math.sin(math.radians(self.rotation) + (math.pi / 2.))
+ vy = (self.height / 2.) * \
+ math.sin(math.radians(self.rotation) + (math.pi / 2.))
return 2 * math.sqrt((uy * uy) + (vy * vy))
class Rectangle(Primitive):
"""
"""
+
def __init__(self, position, width, height, **kwargs):
super(Rectangle, self).__init__(**kwargs)
validate_coordinates(position)
- self.position = position
- self.width = width
- self.height = height
+ self._position = position
+ self._width = width
+ self._height = height
self._to_convert = ['position', 'width', 'height']
-
+ self._lower_left = None
+ self._upper_right = None
@property
- def lower_left(self):
- return (self.position[0] - (self._abs_width / 2.),
- self.position[1] - (self._abs_height / 2.))
+ def position(self):
+ return self._position
+
+ @position.setter
+ def position(self, value):
+ self._changed()
+ self._position = value
+
+ @property
+ def width(self):
+ return self._width
+
+ @width.setter
+ def width(self, value):
+ self._changed()
+ self._width = value
+
+ @property
+ def height(self):
+ return self._height
+
+ @height.setter
+ def height(self, value):
+ self._changed()
+ self._height = value
@property
- def upper_right(self):
- return (self.position[0] + (self._abs_width / 2.),
- self.position[1] + (self._abs_height / 2.))
+ def lower_left(self):
+ return (self.position[0] - (self.axis_aligned_width / 2.),
+ self.position[1] - (self.axis_aligned_height / 2.))
@property
def bounding_box(self):
- min_x = self.lower_left[0]
- max_x = self.upper_right[0]
- min_y = self.lower_left[1]
- max_y = self.upper_right[1]
- return ((min_x, max_x), (min_y, max_y))
+ if self._bounding_box is None:
+ ll = (self.position[0] - (self.axis_aligned_width / 2.),
+ self.position[1] - (self.axis_aligned_height / 2.))
+ ur = (self.position[0] + (self.axis_aligned_width / 2.),
+ self.position[1] + (self.axis_aligned_height / 2.))
+ self._bounding_box = ((ll[0], ur[0]), (ll[1], ur[1]))
+ return self._bounding_box
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+ @property
+ def vertices(self):
+ if self._vertices is None:
+ delta_w = self.width / 2.
+ delta_h = self.height / 2.
+ ll = ((self.position[0] - delta_w), (self.position[1] - delta_h))
+ ul = ((self.position[0] - delta_w), (self.position[1] + delta_h))
+ ur = ((self.position[0] + delta_w), (self.position[1] + delta_h))
+ lr = ((self.position[0] + delta_w), (self.position[1] - delta_h))
+ self._vertices = [((x * self._cos_theta - y * self._sin_theta),
+ (x * self._sin_theta + y * self._cos_theta))
+ for x, y in [ll, ul, ur, lr]]
+ return self._vertices
@property
- def _abs_width(self):
- return (math.cos(math.radians(self.rotation)) * self.width +
- math.sin(math.radians(self.rotation)) * self.height)
+ def axis_aligned_width(self):
+ return (self._cos_theta * self.width + self._sin_theta * self.height)
+
@property
- def _abs_height(self):
- return (math.cos(math.radians(self.rotation)) * self.height +
- math.sin(math.radians(self.rotation)) * self.width)
-
+ def axis_aligned_height(self):
+ return (self._cos_theta * self.height + self._sin_theta * self.width)
+
class Diamond(Primitive):
"""
"""
+
def __init__(self, position, width, height, **kwargs):
super(Diamond, self).__init__(**kwargs)
validate_coordinates(position)
- self.position = position
- self.width = width
- self.height = height
+ self._position = position
+ self._width = width
+ self._height = height
self._to_convert = ['position', 'width', 'height']
@property
- def lower_left(self):
- return (self.position[0] - (self._abs_width / 2.),
- self.position[1] - (self._abs_height / 2.))
+ def position(self):
+ return self._position
+
+ @position.setter
+ def position(self, value):
+ self._changed()
+ self._position = value
+
+ @property
+ def width(self):
+ return self._width
+
+ @width.setter
+ def width(self, value):
+ self._changed()
+ self._width = value
@property
- def upper_right(self):
- return (self.position[0] + (self._abs_width / 2.),
- self.position[1] + (self._abs_height / 2.))
+ def height(self):
+ return self._height
+
+ @height.setter
+ def height(self, value):
+ self._changed()
+ self._height = value
@property
def bounding_box(self):
- min_x = self.lower_left[0]
- max_x = self.upper_right[0]
- min_y = self.lower_left[1]
- max_y = self.upper_right[1]
- return ((min_x, max_x), (min_y, max_y))
+ if self._bounding_box is None:
+ ll = (self.position[0] - (self.axis_aligned_width / 2.),
+ self.position[1] - (self.axis_aligned_height / 2.))
+ ur = (self.position[0] + (self.axis_aligned_width / 2.),
+ self.position[1] + (self.axis_aligned_height / 2.))
+ self._bounding_box = ((ll[0], ur[0]), (ll[1], ur[1]))
+ return self._bounding_box
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+ @property
+ def vertices(self):
+ if self._vertices is None:
+ delta_w = self.width / 2.
+ delta_h = self.height / 2.
+ top = (self.position[0], (self.position[1] + delta_h))
+ right = ((self.position[0] + delta_w), self.position[1])
+ bottom = (self.position[0], (self.position[1] - delta_h))
+ left = ((self.position[0] - delta_w), self.position[1])
+ self._vertices = [(((x * self._cos_theta) - (y * self._sin_theta)),
+ ((x * self._sin_theta) + (y * self._cos_theta)))
+ for x, y in [top, right, bottom, left]]
+ return self._vertices
@property
- def _abs_width(self):
- return (math.cos(math.radians(self.rotation)) * self.width +
- math.sin(math.radians(self.rotation)) * self.height)
+ def axis_aligned_width(self):
+ return (self._cos_theta * self.width + self._sin_theta * self.height)
+
@property
- def _abs_height(self):
- return (math.cos(math.radians(self.rotation)) * self.height +
- math.sin(math.radians(self.rotation)) * self.width)
+ def axis_aligned_height(self):
+ return (self._cos_theta * self.height + self._sin_theta * self.width)
class ChamferRectangle(Primitive):
"""
"""
+
def __init__(self, position, width, height, chamfer, corners, **kwargs):
super(ChamferRectangle, self).__init__(**kwargs)
validate_coordinates(position)
- self.position = position
- self.width = width
- self.height = height
- self.chamfer = chamfer
- self.corners = corners
+ self._position = position
+ self._width = width
+ self._height = height
+ self._chamfer = chamfer
+ self._corners = corners
self._to_convert = ['position', 'width', 'height', 'chamfer']
@property
- def lower_left(self):
- return (self.position[0] - (self._abs_width / 2.),
- self.position[1] - (self._abs_height / 2.))
+ def position(self):
+ return self._position
+
+ @position.setter
+ def position(self, value):
+ self._changed()
+ self._position = value
@property
- def upper_right(self):
- return (self.position[0] + (self._abs_width / 2.),
- self.position[1] + (self._abs_height / 2.))
+ def width(self):
+ return self._width
+
+ @width.setter
+ def width(self, value):
+ self._changed()
+ self._width = value
+
+ @property
+ def height(self):
+ return self._height
+
+ @height.setter
+ def height(self, value):
+ self._changed()
+ self._height = value
+
+ @property
+ def chamfer(self):
+ return self._chamfer
+
+ @chamfer.setter
+ def chamfer(self, value):
+ self._changed()
+ self._chamfer = value
+
+ @property
+ def corners(self):
+ return self._corners
+
+ @corners.setter
+ def corners(self, value):
+ self._changed()
+ self._corners = value
@property
def bounding_box(self):
- min_x = self.lower_left[0]
- max_x = self.upper_right[0]
- min_y = self.lower_left[1]
- max_y = self.upper_right[1]
- return ((min_x, max_x), (min_y, max_y))
+ if self._bounding_box is None:
+ ll = (self.position[0] - (self.axis_aligned_width / 2.),
+ self.position[1] - (self.axis_aligned_height / 2.))
+ ur = (self.position[0] + (self.axis_aligned_width / 2.),
+ self.position[1] + (self.axis_aligned_height / 2.))
+ self._bounding_box = ((ll[0], ur[0]), (ll[1], ur[1]))
+ return self._bounding_box
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+ @property
+ def vertices(self):
+ # TODO
+ return self._vertices
@property
- def _abs_width(self):
- return (math.cos(math.radians(self.rotation)) * self.width +
- math.sin(math.radians(self.rotation)) * self.height)
+ def axis_aligned_width(self):
+ return (self._cos_theta * self.width +
+ self._sin_theta * self.height)
+
@property
- def _abs_height(self):
- return (math.cos(math.radians(self.rotation)) * self.height +
- math.sin(math.radians(self.rotation)) * self.width)
+ def axis_aligned_height(self):
+ return (self._cos_theta * self.height +
+ self._sin_theta * self.width)
+
class RoundRectangle(Primitive):
"""
"""
+
def __init__(self, position, width, height, radius, corners, **kwargs):
super(RoundRectangle, self).__init__(**kwargs)
validate_coordinates(position)
- self.position = position
- self.width = width
- self.height = height
- self.radius = radius
- self.corners = corners
+ self._position = position
+ self._width = width
+ self._height = height
+ self._radius = radius
+ self._corners = corners
self._to_convert = ['position', 'width', 'height', 'radius']
@property
- def lower_left(self):
- return (self.position[0] - (self._abs_width / 2.),
- self.position[1] - (self._abs_height / 2.))
+ def position(self):
+ return self._position
+
+ @position.setter
+ def position(self, value):
+ self._changed()
+ self._position = value
@property
- def upper_right(self):
- return (self.position[0] + (self._abs_width / 2.),
- self.position[1] + (self._abs_height / 2.))
+ def width(self):
+ return self._width
+
+ @width.setter
+ def width(self, value):
+ self._changed()
+ self._width = value
@property
- def bounding_box(self):
- min_x = self.lower_left[0]
- max_x = self.upper_right[0]
- min_y = self.lower_left[1]
- max_y = self.upper_right[1]
- return ((min_x, max_x), (min_y, max_y))
+ def height(self):
+ return self._height
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+ @height.setter
+ def height(self, value):
+ self._changed()
+ self._height = value
+
+ @property
+ def radius(self):
+ return self._radius
+
+ @radius.setter
+ def radius(self, value):
+ self._changed()
+ self._radius = value
+
+ @property
+ def corners(self):
+ return self._corners
+
+ @corners.setter
+ def corners(self, value):
+ self._changed()
+ self._corners = value
@property
- def _abs_width(self):
- return (math.cos(math.radians(self.rotation)) * self.width +
- math.sin(math.radians(self.rotation)) * self.height)
+ def bounding_box(self):
+ if self._bounding_box is None:
+ ll = (self.position[0] - (self.axis_aligned_width / 2.),
+ self.position[1] - (self.axis_aligned_height / 2.))
+ ur = (self.position[0] + (self.axis_aligned_width / 2.),
+ self.position[1] + (self.axis_aligned_height / 2.))
+ self._bounding_box = ((ll[0], ur[0]), (ll[1], ur[1]))
+ return self._bounding_box
+
+ @property
+ def axis_aligned_width(self):
+ return (self._cos_theta * self.width +
+ self._sin_theta * self.height)
+
@property
- def _abs_height(self):
- return (math.cos(math.radians(self.rotation)) * self.height +
- math.sin(math.radians(self.rotation)) * self.width)
+ def axis_aligned_height(self):
+ return (self._cos_theta * self.height +
+ self._sin_theta * self.width)
+
class Obround(Primitive):
"""
"""
+
def __init__(self, position, width, height, **kwargs):
super(Obround, self).__init__(**kwargs)
validate_coordinates(position)
- self.position = position
- self.width = width
- self.height = height
+ self._position = position
+ self._width = width
+ self._height = height
self._to_convert = ['position', 'width', 'height']
@property
- def lower_left(self):
- return (self.position[0] - (self._abs_width / 2.),
- self.position[1] - (self._abs_height / 2.))
+ def position(self):
+ return self._position
+
+ @position.setter
+ def position(self, value):
+ self._changed()
+ self._position = value
+
+ @property
+ def width(self):
+ return self._width
+
+ @width.setter
+ def width(self, value):
+ self._changed()
+ self._width = value
@property
- def upper_right(self):
- return (self.position[0] + (self._abs_width / 2.),
- self.position[1] + (self._abs_height / 2.))
+ def height(self):
+ return self._height
+
+ @height.setter
+ def height(self, value):
+ self._changed()
+ self._height = value
@property
def orientation(self):
@@ -528,68 +857,102 @@ class Obround(Primitive):
@property
def bounding_box(self):
- min_x = self.lower_left[0]
- max_x = self.upper_right[0]
- min_y = self.lower_left[1]
- max_y = self.upper_right[1]
- return ((min_x, max_x), (min_y, max_y))
+ if self._bounding_box is None:
+ ll = (self.position[0] - (self.axis_aligned_width / 2.),
+ self.position[1] - (self.axis_aligned_height / 2.))
+ ur = (self.position[0] + (self.axis_aligned_width / 2.),
+ self.position[1] + (self.axis_aligned_height / 2.))
+ self._bounding_box = ((ll[0], ur[0]), (ll[1], ur[1]))
+ return self._bounding_box
@property
def subshapes(self):
if self.orientation == 'vertical':
circle1 = Circle((self.position[0], self.position[1] +
- (self.height-self.width) / 2.), self.width)
+ (self.height - self.width) / 2.), self.width)
circle2 = Circle((self.position[0], self.position[1] -
- (self.height-self.width) / 2.), self.width)
+ (self.height - self.width) / 2.), self.width)
rect = Rectangle(self.position, self.width,
- (self.height - self.width))
+ (self.height - self.width))
else:
- circle1 = Circle((self.position[0] - (self.height - self.width) / 2.,
+ circle1 = Circle((self.position[0]
+ - (self.height - self.width) / 2.,
self.position[1]), self.height)
- circle2 = Circle((self.position[0] + (self.height - self.width) / 2.,
+ circle2 = Circle((self.position[0]
+ + (self.height - self.width) / 2.,
self.position[1]), self.height)
rect = Rectangle(self.position, (self.width - self.height),
- self.height)
+ self.height)
return {'circle1': circle1, 'circle2': circle2, 'rectangle': rect}
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
-
@property
- def _abs_width(self):
- return (math.cos(math.radians(self.rotation)) * self.width +
- math.sin(math.radians(self.rotation)) * self.height)
+ def axis_aligned_width(self):
+ return (self._cos_theta * self.width +
+ self._sin_theta * self.height)
+
@property
- def _abs_height(self):
- return (math.cos(math.radians(self.rotation)) * self.height +
- math.sin(math.radians(self.rotation)) * self.width)
+ def axis_aligned_height(self):
+ return (self._cos_theta * self.height +
+ self._sin_theta * self.width)
+
class Polygon(Primitive):
"""
"""
+
def __init__(self, position, sides, radius, **kwargs):
super(Polygon, self).__init__(**kwargs)
validate_coordinates(position)
- self.position = position
+ self._position = position
self.sides = sides
- self.radius = radius
+ self._radius = radius
self._to_convert = ['position', 'radius']
@property
+ def position(self):
+ return self._position
+
+ @position.setter
+ def position(self, value):
+ self._changed()
+ self._position = value
+
+ @property
+ def radius(self):
+ return self._radius
+
+ @radius.setter
+ def radius(self, value):
+ self._changed()
+ self._radius = value
+
+ @property
def bounding_box(self):
- min_x = self.position[0] - self.radius
- max_x = self.position[0] + self.radius
- min_y = self.position[1] - self.radius
- max_y = self.position[1] + self.radius
- return ((min_x, max_x), (min_y, max_y))
+ if self._bounding_box is None:
+ min_x = self.position[0] - self.radius
+ max_x = self.position[0] + self.radius
+ min_y = self.position[1] - self.radius
+ max_y = self.position[1] + self.radius
+ self._bounding_box = ((min_x, max_x), (min_y, max_y))
+ return self._bounding_box
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+ @property
+ def vertices(self):
+ if self._vertices is None:
+ theta = math.radians(360/self.sides)
+ vertices = [(self.position[0] + (math.cos(theta * side) * self.radius),
+ self.position[1] + (math.sin(theta * side) * self.radius))
+ for side in range(self.sides)]
+ self._vertices = [(((x * self._cos_theta) - (y * self._sin_theta)),
+ ((x * self._sin_theta) + (y * self._cos_theta)))
+ for x, y in vertices]
+ return self._vertices
class Region(Primitive):
"""
"""
+
def __init__(self, primitives, **kwargs):
super(Region, self).__init__(**kwargs)
self.primitives = primitives
@@ -597,16 +960,19 @@ class Region(Primitive):
@property
def bounding_box(self):
- xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
- minx, maxx = zip(*xlims)
- miny, maxy = zip(*ylims)
- min_x = min(minx)
- max_x = max(maxx)
- min_y = min(miny)
- max_y = max(maxy)
- return ((min_x, max_x), (min_y, max_y))
+ if self._bounding_box is None:
+ xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
+ minx, maxx = zip(*xlims)
+ miny, maxy = zip(*ylims)
+ min_x = min(minx)
+ max_x = max(maxx)
+ min_y = min(miny)
+ max_y = max(maxy)
+ self._bounding_box = ((min_x, max_x), (min_y, max_y))
+ return self._bounding_box
def offset(self, x_offset=0, y_offset=0):
+ self._changed()
for p in self.primitives:
p.offset(x_offset, y_offset)
@@ -614,6 +980,7 @@ class Region(Primitive):
class RoundButterfly(Primitive):
""" A circle with two diagonally-opposite quadrants removed
"""
+
def __init__(self, position, diameter, **kwargs):
super(RoundButterfly, self).__init__(**kwargs)
validate_coordinates(position)
@@ -627,19 +994,19 @@ class RoundButterfly(Primitive):
@property
def bounding_box(self):
- min_x = self.position[0] - self.radius
- max_x = self.position[0] + self.radius
- min_y = self.position[1] - self.radius
- max_y = self.position[1] + self.radius
- return ((min_x, max_x), (min_y, max_y))
-
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+ if self._bounding_box is None:
+ min_x = self.position[0] - self.radius
+ max_x = self.position[0] + self.radius
+ min_y = self.position[1] - self.radius
+ max_y = self.position[1] + self.radius
+ self._bounding_box = ((min_x, max_x), (min_y, max_y))
+ return self._bounding_box
class SquareButterfly(Primitive):
""" A square with two diagonally-opposite quadrants removed
"""
+
def __init__(self, position, side, **kwargs):
super(SquareButterfly, self).__init__(**kwargs)
validate_coordinates(position)
@@ -647,31 +1014,33 @@ class SquareButterfly(Primitive):
self.side = side
self._to_convert = ['position', 'side']
-
@property
def bounding_box(self):
- min_x = self.position[0] - (self.side / 2.)
- max_x = self.position[0] + (self.side / 2.)
- min_y = self.position[1] - (self.side / 2.)
- max_y = self.position[1] + (self.side / 2.)
- return ((min_x, max_x), (min_y, max_y))
-
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+ if self._bounding_box is None:
+ min_x = self.position[0] - (self.side / 2.)
+ max_x = self.position[0] + (self.side / 2.)
+ min_y = self.position[1] - (self.side / 2.)
+ max_y = self.position[1] + (self.side / 2.)
+ self._bounding_box = ((min_x, max_x), (min_y, max_y))
+ return self._bounding_box
class Donut(Primitive):
""" A Shape with an identical concentric shape removed from its center
"""
- def __init__(self, position, shape, inner_diameter, outer_diameter, **kwargs):
+
+ def __init__(self, position, shape, inner_diameter,
+ outer_diameter, **kwargs):
super(Donut, self).__init__(**kwargs)
validate_coordinates(position)
self.position = position
if shape not in ('round', 'square', 'hexagon', 'octagon'):
- raise ValueError('Valid shapes are round, square, hexagon or octagon')
+ raise ValueError(
+ 'Valid shapes are round, square, hexagon or octagon')
self.shape = shape
if inner_diameter >= outer_diameter:
- raise ValueError('Outer diameter must be larger than inner diameter.')
+ raise ValueError(
+ 'Outer diameter must be larger than inner diameter.')
self.inner_diameter = inner_diameter
self.outer_diameter = outer_diameter
if self.shape in ('round', 'square', 'octagon'):
@@ -681,95 +1050,95 @@ class Donut(Primitive):
# Hexagon
self.width = 0.5 * math.sqrt(3.) * outer_diameter
self.height = outer_diameter
- self._to_convert = ['position', 'width', 'height', 'inner_diameter', 'outer_diameter']
-
- @property
- def lower_left(self):
- return (self.position[0] - (self.width / 2.),
- self.position[1] - (self.height / 2.))
-
- @property
- def upper_right(self):
- return (self.position[0] + (self.width / 2.),
- self.position[1] + (self.height / 2.))
+ self._to_convert = ['position', 'width',
+ 'height', 'inner_diameter', 'outer_diameter']
@property
def bounding_box(self):
- min_x = self.lower_left[0]
- max_x = self.upper_right[0]
- min_y = self.lower_left[1]
- max_y = self.upper_right[1]
- return ((min_x, max_x), (min_y, max_y))
-
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+ if self._bounding_box is None:
+ ll = (self.position[0] - (self.width / 2.),
+ self.position[1] - (self.height / 2.))
+ ur = (self.position[0] + (self.width / 2.),
+ self.position[1] + (self.height / 2.))
+ self._bounding_box = ((ll[0], ur[0]), (ll[1], ur[1]))
+ return self._bounding_box
class SquareRoundDonut(Primitive):
""" A Square with a circular cutout in the center
"""
+
def __init__(self, position, inner_diameter, outer_diameter, **kwargs):
super(SquareRoundDonut, self).__init__(**kwargs)
validate_coordinates(position)
self.position = position
if inner_diameter >= outer_diameter:
- raise ValueError('Outer diameter must be larger than inner diameter.')
+ raise ValueError(
+ 'Outer diameter must be larger than inner diameter.')
self.inner_diameter = inner_diameter
self.outer_diameter = outer_diameter
self._to_convert = ['position', 'inner_diameter', 'outer_diameter']
@property
- def lower_left(self):
- return tuple([c - self.outer_diameter / 2. for c in self.position])
-
- @property
- def upper_right(self):
- return tuple([c + self.outer_diameter / 2. for c in self.position])
-
- @property
def bounding_box(self):
- min_x = self.lower_left[0]
- max_x = self.upper_right[0]
- min_y = self.lower_left[1]
- max_y = self.upper_right[1]
- return ((min_x, max_x), (min_y, max_y))
-
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
+ if self._bounding_box is None:
+ ll = tuple([c - self.outer_diameter / 2. for c in self.position])
+ ur = tuple([c + self.outer_diameter / 2. for c in self.position])
+ self._bounding_box = ((ll[0], ur[0]), (ll[1], ur[1]))
+ return self._bounding_box
class Drill(Primitive):
""" A drill hole
"""
+
def __init__(self, position, diameter, **kwargs):
super(Drill, self).__init__('dark', **kwargs)
validate_coordinates(position)
- self.position = position
- self.diameter = diameter
+ self._position = position
+ self._diameter = diameter
self._to_convert = ['position', 'diameter']
@property
+ def position(self):
+ return self._position
+
+ @position.setter
+ def position(self, value):
+ self._changed()
+ self._position = value
+
+ @property
+ def diameter(self):
+ return self._diameter
+
+ @diameter.setter
+ def diameter(self, value):
+ self._changed()
+ self._diameter = value
+
+ @property
def radius(self):
return self.diameter / 2.
@property
def bounding_box(self):
- min_x = self.position[0] - self.radius
- max_x = self.position[0] + self.radius
- min_y = self.position[1] - self.radius
- max_y = self.position[1] + self.radius
- return ((min_x, max_x), (min_y, max_y))
+ if self._bounding_box is None:
+ min_x = self.position[0] - self.radius
+ max_x = self.position[0] + self.radius
+ min_y = self.position[1] - self.radius
+ max_y = self.position[1] + self.radius
+ self._bounding_box = ((min_x, max_x), (min_y, max_y))
+ return self._bounding_box
- def offset(self, x_offset=0, y_offset=0):
- self.position = tuple(map(add, self.position, (x_offset, y_offset)))
class TestRecord(Primitive):
""" Netlist Test record
"""
+
def __init__(self, position, net_name, layer, **kwargs):
super(TestRecord, self).__init__(**kwargs)
validate_coordinates(position)
self.position = position
self.net_name = net_name
self.layer = layer
-