diff options
author | jaseg <git@jaseg.de> | 2023-10-13 18:22:00 +0200 |
---|---|---|
committer | jaseg <git@jaseg.de> | 2023-10-13 18:22:00 +0200 |
commit | 1ce02a9d25a943ab90c819d23c4d0bbed684eba4 (patch) | |
tree | be62179a9573b4cd598f46fe2208bd6a5d90969b /coil_parasitics.py | |
parent | 0ae13de322386d1691de8f17491540d65178f865 (diff) | |
download | gerbonara-1ce02a9d25a943ab90c819d23c4d0bbed684eba4.tar.gz gerbonara-1ce02a9d25a943ab90c819d23c4d0bbed684eba4.tar.bz2 gerbonara-1ce02a9d25a943ab90c819d23c4d0bbed684eba4.zip |
Update sims & gen
Diffstat (limited to 'coil_parasitics.py')
-rw-r--r-- | coil_parasitics.py | 124 |
1 files changed, 116 insertions, 8 deletions
diff --git a/coil_parasitics.py b/coil_parasitics.py index 46552c7..3ed02dd 100644 --- a/coil_parasitics.py +++ b/coil_parasitics.py @@ -116,7 +116,7 @@ def cli(): @cli.command() @click.option('-d', '--sim-dir', type=click.Path(dir_okay=True, file_okay=False, path_type=Path)) @click.argument('mesh_file', type=click.Path(dir_okay=False, path_type=Path)) -def self_capacitance(mesh_file, sim_dir): +def capacitance_matrix(mesh_file, sim_dir): physical = dict(enumerate_mesh_bodies(mesh_file)) if sim_dir is not None: sim_dir = Path(sim_dir) @@ -133,14 +133,14 @@ def self_capacitance(mesh_file, sim_dir): 'Unit Charge': str(constants.elementary_charge)}) air = elmer.load_material('air', sim, 'coil_parasitics_materials.yml') - ro4003c = elmer.load_material('ro4003c', sim, 'coil_parasitics_materials.yml') + fr4 = elmer.load_material('fr4', sim, 'coil_parasitics_materials.yml') solver_electrostatic = elmer.load_solver('Electrostatics_Capacitance', sim, 'coil_parasitics_solvers.yml') solver_electrostatic.data['Potential Difference'] = '1.0' eqn = elmer.Equation(sim, 'main', [solver_electrostatic]) bdy_sub = elmer.Body(sim, 'substrate', [physical['substrate'][1]]) - bdy_sub.material = ro4003c + bdy_sub.material = fr4 bdy_sub.equation = eqn bdy_ab = elmer.Body(sim, 'airbox', [physical['airbox'][1]]) @@ -202,7 +202,7 @@ def inductance(mesh_file, sim_dir, solver_method): 'Unit Charge': str(constants.elementary_charge)}) air = elmer.load_material('air', sim, 'coil_mag_materials.yml') - ro4003c = elmer.load_material('ro4003c', sim, 'coil_mag_materials.yml') + fr4 = elmer.load_material('fr4', sim, 'coil_mag_materials.yml') copper = elmer.load_material('copper', sim, 'coil_mag_materials.yml') solver_current = elmer.load_solver('Static_Current_Conduction', sim, 'coil_mag_solvers.yml') @@ -219,7 +219,7 @@ def inductance(mesh_file, sim_dir, solver_method): bdy_trace.equation = copper_eqn bdy_sub = elmer.Body(sim, 'substrate', [physical['substrate'][1]]) - bdy_sub.material = ro4003c + bdy_sub.material = fr4 bdy_sub.equation = air_eqn bdy_ab = elmer.Body(sim, 'airbox', [physical['airbox'][1]]) @@ -313,7 +313,7 @@ def mutual_inductance(mesh_file, sim_dir, reference_field): 'Unit Charge': str(constants.elementary_charge)}) air = elmer.load_material('air', sim, 'coil_mag_materials.yml') - ro4003c = elmer.load_material('ro4003c', sim, 'coil_mag_materials.yml') + fr4 = elmer.load_material('fr4', sim, 'coil_mag_materials.yml') copper = elmer.load_material('copper', sim, 'coil_mag_materials.yml') solver_current = elmer.load_solver('Static_Current_Conduction', sim, 'coil_mag_solvers.yml') @@ -332,11 +332,11 @@ def mutual_inductance(mesh_file, sim_dir, reference_field): bdy_trace2.equation = copper_eqn bdy_sub1 = elmer.Body(sim, 'substrate1', [physical['substrate1'][1]]) - bdy_sub1.material = ro4003c + bdy_sub1.material = fr4 bdy_sub1.equation = air_eqn bdy_sub2 = elmer.Body(sim, 'substrate2', [physical['substrate2'][1]]) - bdy_sub2.material = ro4003c + bdy_sub2.material = fr4 bdy_sub2.equation = air_eqn @@ -422,6 +422,114 @@ def mutual_inductance(mesh_file, sim_dir, reference_field): print(f'Mutual inductance calucated from field: {format_si(Lm, "H")}') +@cli.command() +@click.option('-d', '--sim-dir', type=click.Path(dir_okay=True, file_okay=False, path_type=Path)) +@click.argument('mesh_file', type=click.Path(dir_okay=False, path_type=Path)) +def self_capacitance(mesh_file, sim_dir): + physical = dict(enumerate_mesh_bodies(mesh_file)) + + if sim_dir is not None: + sim_dir = Path(sim_dir) + sim_dir.mkdir(exist_ok=True) + + sim = elmer.load_simulation('3D_steady', 'self_capacitance_sim.yml') + mesh_dir = '.' + mesh_fn = 'mesh' + sim.header['Mesh DB'] = f'"{mesh_dir}" "{mesh_fn}"' + sim.constants.update({ + 'Permittivity of Vacuum': str(constants.epsilon_0), + 'Gravity(4)': f'0 -1 0 {constants.g}', + 'Boltzmann Constant': str(constants.Boltzmann), + 'Unit Charge': str(constants.elementary_charge)}) + + air = elmer.load_material('air', sim, 'coil_mag_materials.yml') + fr4 = elmer.load_material('fr4', sim, 'coil_mag_materials.yml') + copper = elmer.load_material('copper', sim, 'coil_mag_materials.yml') + + solver_current = elmer.load_solver('StaticCurrent', sim, 'self_capacitance_solvers.yml') + solver_estat = elmer.load_solver('Electrostatics', sim, 'self_capacitance_solvers.yml') + + copper_eqn = elmer.Equation(sim, 'copperEqn', [solver_current, solver_estat]) + air_eqn = elmer.Equation(sim, 'airEqn', [solver_estat]) + + bdy_trace = elmer.Body(sim, 'trace', [physical['trace'][1]]) + bdy_trace.material = copper + bdy_trace.equation = copper_eqn + + bdy_sub = elmer.Body(sim, 'substrate', [physical['substrate'][1]]) + bdy_sub.material = fr4 + bdy_sub.equation = air_eqn + + bdy_ab = elmer.Body(sim, 'airbox', [physical['airbox'][1]]) + bdy_ab.material = air + bdy_ab.equation = air_eqn + + bdy_if_top = elmer.Body(sim, 'interface_top', [physical['interface_top'][1]]) + bdy_if_top.material = copper + bdy_if_top.equation = copper_eqn + + bdy_if_bottom = elmer.Body(sim, 'interface_bottom', [physical['interface_bottom'][1]]) + bdy_if_bottom.material = copper + bdy_if_bottom.equation = copper_eqn + + potential_force = elmer.BodyForce(sim, 'electric_potential', {'Potential': 'Equals "PotentialStat"'}) + bdy_trace.body_force = potential_force + + # boundaries + boundary_airbox = elmer.Boundary(sim, 'FarField', [physical['airbox_surface'][1]]) + boundary_airbox.data['Electric Infinity BC'] = 'True' + + boundary_vplus = elmer.Boundary(sim, 'Vplus', [physical['interface_top'][1]]) + boundary_vplus.data['PotentialStat'] = 'Real 1.0' + boundary_vplus.data['Save Scalars'] = True + + boundary_vminus = elmer.Boundary(sim, 'Vminus', [physical['interface_bottom'][1]]) + boundary_vminus.data['PotentialStat'] = 'Real 0.0' + + with tempfile.TemporaryDirectory() as tmpdir: + tmpdir = sim_dir if sim_dir else Path(tmpdir) + + sim.write_startinfo(tmpdir) + sim.write_sif(tmpdir) + # Convert mesh from gmsh to elemer formats. Also scale it from 1 unit = 1 mm to 1 unit = 1 m (SI units) + elmer_grid(mesh_file.absolute(), 'mesh', cwd=tmpdir, scale=[1e-3, 1e-3, 1e-3], + stdout_log=(tmpdir / 'ElmerGrid_stdout.log'), + stderr_log=(tmpdir / 'ElmerGrid_stderr.log')) + solver_stdout, solver_stderr = (tmpdir / 'ElmerSolver_stdout.log'), (tmpdir / 'ElmerSolver_stderr.log') + res = elmer_solver(tmpdir, + stdout_log=solver_stdout, + stderr_log=solver_stderr) + + P, R, U_mag = None, None, None + solver_error = False + for l in res.stdout.splitlines(): + if (m := re.fullmatch(r'StatCurrentSolve:\s*Total Heating Power\s*:\s*([0-9.+-Ee]+)\s*', l)): + P = float(m.group(1)) + elif (m := re.fullmatch(r'StatCurrentSolve:\s*Effective Resistance\s*:\s*([0-9.+-Ee]+)\s*', l)): + R = float(m.group(1)) + elif (m := re.fullmatch(r'MagnetoDynamicsCalcFields:\s*ElectroMagnetic Field Energy\s*:\s*([0-9.+-Ee]+)\s*', l)): + U_mag = float(m.group(1)) + elif re.fullmatch(r'IterSolve: Linear iteration did not converge to tolerance', l): + solver_error = True + + if solver_error: + raise click.ClickException(f'Error: One of the solvers did not converge. See log files for details:\n{solver_stdout.absolute()}\n{solver_stderr.absolute()}') + elif P is None or R is None or U_mag is None: + raise click.ClickException(f'Error during solver execution. Electrical parameters could not be calculated. See log files for details:\n{solver_stdout.absolute()}\n{solver_stderr.absolute()}') + + V = math.sqrt(P*R) + I = math.sqrt(P/R) + L = 2*U_mag / (I**2) + + assert math.isclose(V, 1.0, abs_tol=1e-3) + + print(f'Total magnetic field energy: {format_si(U_mag, "J")}') + print(f'Reference coil current: {format_si(I, "Ω")}') + print(f'Coil resistance calculated by solver: {format_si(R, "Ω")}') + print(f'Inductance calucated from field: {format_si(L, "H")}') + + + if __name__ == '__main__': cli() |