aboutsummaryrefslogtreecommitdiff
path: root/svg-flatten/src/vec_core.cpp
blob: 1b36887ed3125176c0da0b8e262463b14d0d27d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/*
 * This file is part of gerbolyze, a vector image preprocessing toolchain 
 * Copyright (C) 2021 Jan Sebastian Götte <gerbolyze@jaseg.de>
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 * 
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <vector>
#include <regex>
#include "nopencv.hpp"
#include "svg_import_util.h"
#include "vec_core.h"
#include "svg_import_defs.h"
#include "jc_voronoi.h"

using namespace gerbolyze;
using namespace std;

ImageVectorizer *gerbolyze::makeVectorizer(const std::string &name) {
    if (name == "poisson-disc")
        return new VoronoiVectorizer(POISSON_DISC, /* relax */ true);
    else if (name == "hex-grid")
        return new VoronoiVectorizer(HEXGRID, /* relax */ false);
    else if (name == "square-grid")
        return new VoronoiVectorizer(SQUAREGRID, /* relax */ false);
    else if (name == "binary-contours")
        return new OpenCVContoursVectorizer();
    else if (name == "dev-null")
        return new DevNullVectorizer();

    return nullptr;
}

/* From jcv voronoi README */
static void voronoi_relax_points(const jcv_diagram* diagram, jcv_point* points) {
    const jcv_site* sites = jcv_diagram_get_sites(diagram);
    for (int i=0; i<diagram->numsites; i++) {
        const jcv_site* site = &sites[i];
        jcv_point sum = site->p;
        int count = 1;

        const jcv_graphedge* edge = site->edges;

        while (edge) {
            sum.x += edge->pos[0].x;
            sum.y += edge->pos[0].y;
            count++;
            edge = edge->next;
        }

        points[site->index].x = sum.x / count;
        points[site->index].y = sum.y / count;
    }
} 

void gerbolyze::parse_img_meta(const pugi::xml_node &node, double &x, double &y, double &width, double &height) {
    /* Read XML node attributes */
    x = usvg_double_attr(node, "x", 0.0);
    y = usvg_double_attr(node, "y", 0.0);
    width = usvg_double_attr(node, "width", 0.0);
    height = usvg_double_attr(node, "height", 0.0);
    assert (width > 0 && height > 0);
    cerr << "image elem: w="<<width<<", h="<<height<<endl;
}

template<typename T> nopencv::Image<T> *img_from_node(const pugi::xml_node &node) {
    /* Read image from data:base64... URL */
    string img_data = parse_data_iri(node.attribute("xlink:href").value());
    if (img_data.empty()) {
        cerr << "Warning: Empty or invalid image element with id \"" << node.attribute("id").value() << "\"" << endl;
        return nullptr;
    }

    auto *img = new nopencv::Image<T>();
    if (!img->load_memory(img_data.c_str(), img_data.size())) {
        cerr << "Warning: Could not decode content of image element with id \"" << node.attribute("id").value() << "\"" << endl;
        return nullptr;
    }

    return img;
}

void gerbolyze::draw_bg_rect(RenderContext &ctx, double width, double height) {
    /* For our output to look correct, we have to paint the image's bounding box in black as background for our halftone
     * blobs. We cannot simply draw a rect here, though. Instead we have to first intersect the bounding box with the
     * clip path we get from the caller.
     *
     * First, setup the bounding box rectangle in our local px coordinate space. */
    ClipperLib::Path rect_path;
    for (auto &elem : vector<pair<double, double>> {
            {0,     0},
            {width, 0},
            {width, height},
            {0,     height}}) {
        d2p xf(ctx.mat().doc2phys(d2p{elem.first, elem.second}));
        rect_path.push_back({
                (ClipperLib::cInt)round(xf[0] * clipper_scale),
                (ClipperLib::cInt)round(xf[1] * clipper_scale)
        });
    }

    /* Intersect the bounding box with the caller's clip path */
    ClipperLib::Clipper c;
    c.AddPath(rect_path, ClipperLib::ptSubject, /* closed */ true);
    if (!ctx.clip().empty()) {
        c.AddPaths(ctx.clip(), ClipperLib::ptClip, /* closed */ true);
    }

    ClipperLib::Paths rect_out;
    c.StrictlySimple(true);
    c.Execute(ClipperLib::ctIntersection, rect_out, ClipperLib::pftNonZero, ClipperLib::pftNonZero);

    /* draw into gerber. */
    for (const auto &poly : rect_out) {
        vector<array<double, 2>> out;
        for (const auto &p : poly)
            out.push_back(std::array<double, 2>{
                    ((double)p.X) / clipper_scale, ((double)p.Y) / clipper_scale
                    });
        ctx.sink() << GRB_POL_CLEAR << out;
    }
}



/* Render image into gerber file.
 *
 * This function renders an image into a number of vector primitives emulating the images grayscale brightness by
 * differently sized vector shaped giving an effect similar to halftone printing used in newspapers.
 *
 * On a high level, this function does this in four steps:
 * 1. It preprocesses the source image at the pixel level. This involves several tasks:
 *    1.1. It converts the image to grayscale.
 *    1.2. It scales the image up or down to match the given minimum feature size.
 *    1.3. It applies a blur depending on the given minimum feature size to prevent aliasing artifacts.
 * 2. It randomly spread points across the image using poisson disc sampling. This yields points that have a fairly even
 *    average distance to each other across the image, and that have a guaranteed minimum distance that depends on
 *    minimum feature size.
 * 3. It calculates a voronoi map based on this set of points and it calculats the polygon shape of each cell of the
 *    voronoi map.
 * 4. It scales each of these voronoi cell polygons to match the input images brightness at the spot covered by this
 *    cell.
 */
void gerbolyze::VoronoiVectorizer::vectorize_image(RenderContext &ctx, const pugi::xml_node &node, double min_feature_size_px) {
    double x, y, width, height;
    parse_img_meta(node, x, y, width, height);
    nopencv::Image32f *img = img_from_node<float>(node);
    if (img == nullptr)
        return;

    /* Set up target transform using SVG transform and x/y attributes */
    RenderContext img_ctx(ctx, xform2d(1, 0, 0, 1, x, y));
    cerr << "voronoi vectorizer: local_xf = " << ctx.mat().dbg_str() << endl;

    double orig_rows = img->rows();
    double orig_cols = img->cols();
    double scale_x = (double)width / orig_cols;
    double scale_y = (double)height / orig_rows;
    double off_x = 0;
    double off_y = 0;
    handle_aspect_ratio(node.attribute("preserveAspectRatio").value(),
            scale_x, scale_y, off_x, off_y, orig_cols, orig_rows);
    cerr << "aspect " << scale_x << ", " << scale_y << " / " << off_x << ", " << off_y << endl;

    /* Adjust minimum feature size given in mm and translate into px document units in our local coordinate system. */
    min_feature_size_px = img_ctx.mat().doc2phys_dist(min_feature_size_px);
    cerr << "  min_feature_size_px = " << min_feature_size_px << endl;

    draw_bg_rect(img_ctx, width, height);

    /* Set up a poisson-disc sampled point "grid" covering the image. Calculate poisson disc parameters from given
     * minimum feature size. */
    double grayscale_overhead = 0.8; /* fraction of distance between two adjacent cell centers that is reserved for
                                        grayscale interpolation. Larger values -> better grayscale resolution,
                                        larger cells. */
    double center_distance = min_feature_size_px * 2.0 * (1.0 / (1.0-grayscale_overhead));
    vector<d2p> *grid_centers = get_sampler(m_grid_type)(scale_x * orig_cols, scale_y*orig_rows, center_distance);
    //vector<d2p> *grid_centers = sample_poisson_disc(width, height, min_feature_size_px * 2.0 * 2.0);
    //vector<d2p> *grid_centers = sample_hexgrid(width, height, center_distance);
    //vector<d2p> *grid_centers = sample_squaregrid(width, height, center_distance);

    /* Target factor between given min_feature_size and intermediate image pixels,
     * i.e. <scale_featuresize_factor> px ^= min_feature_size */
    double scale_featuresize_factor = 3.0;
    /* TODO: support for preserveAspectRatio attribute */
    double px_w = width / min_feature_size_px * scale_featuresize_factor;
    double px_h = height / min_feature_size_px * scale_featuresize_factor;
    cerr << "  px_size = " << px_w << ", " << px_h << endl;

    /* Scale intermediate image (step 1.2) to have <scale_featuresize_factor> pixels per min_feature_size. */ 
    cerr << "scaled " << img->cols() << ", " << img->rows() << " -> " << ((int)round(px_w)) << ", " << ((int)round(px_h)) << endl;
    img->resize((int)round(px_w), (int)round(px_h));

    /* Blur image with a kernel larger than our minimum feature size to avoid aliasing. */
    int blur_size = (int)ceil(fmax(img->cols() / width, img->rows() / height) * center_distance);
    if (blur_size%2 == 0)
        blur_size += 1;
    cerr << "blur size " << blur_size << endl;
    img->blur(blur_size);
    
    /* Calculate voronoi diagram for the grid generated above. */
    jcv_diagram diagram;
    memset(&diagram, 0, sizeof(jcv_diagram));
    cerr << "adjusted scale " << scale_x << " " << scale_y << endl;
    cerr << "voronoi clip rect " << (scale_x * orig_cols) << " " << (scale_y * orig_rows) << endl;
    jcv_rect rect {{0.0, 0.0}, {scale_x * orig_cols, scale_y * orig_rows}};
    jcv_point *pts = reinterpret_cast<jcv_point *>(grid_centers->data()); /* hackety hack */
    jcv_diagram_generate(grid_centers->size(), pts, &rect, 0, &diagram);
    /* Relax points, i.e. wiggle them around a little bit to equalize differences between cell sizes a little bit. */
    if (m_relax)
        voronoi_relax_points(&diagram, pts);
    memset(&diagram, 0, sizeof(jcv_diagram));
    jcv_diagram_generate(grid_centers->size(), pts, &rect, 0, &diagram);
    
    /* For each voronoi cell calculated above, find the brightness of the blurred image pixel below its center. We do
     * not have to average over the entire cell's area here: The blur is doing a good approximation of that while being
     * simpler and faster.
     *
     * We do this step before generating the cell poygons below because we have to look up a cell's neighbor's fill
     * factor during gap filling for minimum feature size preservation. */
    vector<double> fill_factors(diagram.numsites); /* Factor to be multiplied with site polygon radius to yield target
                                                      fill level */
    const jcv_site* sites = jcv_diagram_get_sites(&diagram);
    int j = 0;
    for (int i=0; i<diagram.numsites; i++) {
        const jcv_point center = sites[i].p;

        double pxd = img->at(
                (int)round(center.x / (scale_x * orig_cols / img->cols())),
                (int)round(center.y / (scale_y * orig_rows / img->rows()))) / 255.0; 
        /* FIXME: This is a workaround for a memory corruption bug that happens with the square-grid setting. When using
         * square-grid on a fairly small test image, sometimes sites[i].index will be out of bounds here.
         */
        if (sites[i].index < (int)fill_factors.size())
            fill_factors[sites[i].index] = sqrt(pxd);
    }

    /* Minimum gap between adjacent scaled site polygons. */
    double min_gap_px = min_feature_size_px;
    vector<double> adjusted_fill_factors;
    adjusted_fill_factors.reserve(32); /* Vector to hold adjusted fill factors for each edge for gap filling */
    /* now iterate over all voronoi cells again to generate each cell's scaled polygon halftone blob. */
    cerr << "  generating cells " << diagram.numsites << endl;
    for (int i=0; i<diagram.numsites; i++) {
        const jcv_point center = sites[i].p;
        cerr << "  site center " << center.x << ", " << center.y << endl;
        double fill_factor_ours = fill_factors[sites[i].index];
        
        /* Do not render halftone blobs that are too small */
        if (fill_factor_ours * 0.5 * center_distance < min_gap_px)
            continue;

        /* Iterate over this cell's edges. For each edge, check the gap that would result between this cell's halftone
         * blob and the neighboring cell's halftone blob based on their fill factors. If the gap is too small, either
         * widen it by adjusting both fill factors down a bit (for this edge only!), or eliminate it by setting both
         * fill factors to 1.0 (again, for this edge only!). */
        adjusted_fill_factors.clear();
        const jcv_graphedge* e = sites[i].edges;
        while (e) {
            /* half distance between both neighbors of this edge, i.e. sites[i] and its neighbor. */
            /* Note that in a voronoi tesselation, this edge is always halfway between. */
            double adjusted_fill_factor = fill_factor_ours;

            if (e->neighbor != nullptr) { /* nullptr -> edge is on the voronoi map's border */
                double rad = sqrt(pow(center.x - e->neighbor->p.x, 2) + pow(center.y - e->neighbor->p.y, 2)) / 2.0;
                double fill_factor_theirs = fill_factors[e->neighbor->index];
                double gap_px = (1.0 - fill_factor_ours) * rad + (1.0 - fill_factor_theirs) * rad;

                if (gap_px > min_gap_px) {
                    /* all good. gap is wider than minimum. */
                } else if (gap_px > 0.5 * min_gap_px) {
                    /* gap is narrower than minimum, but more than half of minimum width. */
                    /* force gap open, distribute adjustment evenly on left/right */
                    double fill_factor_adjustment = (min_gap_px - gap_px) / 2.0 / rad;
                    adjusted_fill_factor -= fill_factor_adjustment;
                } else {
                    /* gap is less than half of minimum width. Force gap closed. */
                    adjusted_fill_factor = 1.0;
                }
            }
            adjusted_fill_factors.push_back(adjusted_fill_factor);
            e = e->next;
        }

        cerr << "  blob: ";
        /* Now, generate the actual halftone blob polygon */
        ClipperLib::Path cell_path;
        double last_fill_factor = adjusted_fill_factors.back();
        e = sites[i].edges;
        j = 0;
        while (e) {
            double fill_factor = adjusted_fill_factors[j];
            if (last_fill_factor != fill_factor) {
                /* Fill factor was adjusted since last edge, so generate one extra point so we have a nice radial
                 * "step". */
                d2p p = img_ctx.mat().doc2phys(d2p{
                    off_x + center.x + (e->pos[0].x - center.x) * fill_factor,
                    off_y + center.y + (e->pos[0].y - center.y) * fill_factor
                });
                cerr << " - <" << p[0] << ", " << p[1] << ">";
                cell_path.push_back({
                        (ClipperLib::cInt)round(p[0] * clipper_scale),
                        (ClipperLib::cInt)round(p[1] * clipper_scale)
                });
            }

            /* Emit endpoint of current edge */
            d2p p = img_ctx.mat().doc2phys(d2p{
                off_x + center.x + (e->pos[1].x - center.x) * fill_factor,
                off_y + center.y + (e->pos[1].y - center.y) * fill_factor
            });
            cerr << " - [" << p[0] << ", " << p[1] << "]";
            cell_path.push_back({
                    (ClipperLib::cInt)round(p[0] * clipper_scale),
                    (ClipperLib::cInt)round(p[1] * clipper_scale)
            });

            j += 1;
            last_fill_factor = fill_factor;
            e = e->next;
        }
        cerr << endl;

        /* Now, clip the halftone blob generated above against the given clip path. We do this individually for each
         * blob since this way is *much* faster than throwing a million blobs at once at poor clipper. */
        ClipperLib::Paths polys;
        ClipperLib::Clipper c;
        c.AddPath(cell_path, ClipperLib::ptSubject, /* closed */ true);
        if (!img_ctx.clip().empty()) {
            c.AddPaths(img_ctx.clip(), ClipperLib::ptClip, /* closed */ true);
        }
        c.StrictlySimple(true);
        c.Execute(ClipperLib::ctIntersection, polys, ClipperLib::pftNonZero, ClipperLib::pftNonZero);

        /* Export halftone blob to gerber. */
        for (const auto &poly : polys) {
            vector<array<double, 2>> out;
            for (const auto &p : poly)
                out.push_back(std::array<double, 2>{
                        ((double)p.X) / clipper_scale, ((double)p.Y) / clipper_scale
                        });
            img_ctx.sink() << GRB_POL_DARK << out;
        }
    }

    jcv_diagram_free( &diagram );
    delete grid_centers;
    delete img;
}

void gerbolyze::handle_aspect_ratio(string spec, double &scale_x, double &scale_y, double &off_x, double &off_y, double cols, double rows) {

    if (spec.empty()) {
        spec = "xMidYMid meet";
    }

    auto idx = spec.find(" ");
    string par_align = spec;
    string par_meet = "meet";
    if (idx != string::npos) {
        par_align = spec.substr(0, idx);
        par_meet = spec.substr(idx+1);
    }

    if (par_align != "none") {
        double scale = scale_x;
        if (par_meet == "slice") {
            scale = std::max(scale_x, scale_y);
        } else {
            scale = std::min(scale_x, scale_y);
        }

        std::regex reg("x(Min|Mid|Max)Y(Min|Mid|Max)");
        std::smatch match;

        off_x = (scale_x - scale) * cols;
        off_y = (scale_y - scale) * rows;
        if (std::regex_match(par_align, match, reg)) {
            assert (match.size() == 3);
            if (match[1].str() == "Min") {
                off_x = 0;
            } else if (match[1].str() == "Mid") {
                off_x *= 0.5;
            }

            if (match[2].str() == "Min") {
                off_y = 0;
            } else if (match[2].str() == "Mid") {
                off_y *= 0.5;
            }

        } else {
            cerr << "Invalid preserveAspectRatio meetOrSlice value \"" << par_align << "\"" << endl;
            off_x *= 0.5;
            off_y *= 0.5;
        }

        scale_x = scale_y = scale;
    }
}


void gerbolyze::OpenCVContoursVectorizer::vectorize_image(RenderContext &ctx, const pugi::xml_node &node, double min_feature_size_px) {
    (void) min_feature_size_px; /* unused by this vectorizer */
    double x, y, width, height;
    parse_img_meta(node, x, y, width, height);
    nopencv::Image32 *img = img_from_node<int32_t>(node);
    if (img == nullptr)
        return;

    /* Set up target transform using SVG transform and x/y attributes */
    RenderContext img_ctx(ctx, xform2d(1, 0, 0, 1, x, y));

    double scale_x = (double)width / (double)img->cols();
    double scale_y = (double)height / (double)img->rows();
    double off_x = 0;
    double off_y = 0;
    handle_aspect_ratio(node.attribute("preserveAspectRatio").value(),
            scale_x, scale_y, off_x, off_y, img->cols(), img->rows());

    draw_bg_rect(img_ctx, width, height);

    img->binarize(128);
    nopencv::find_contours(*img,
            nopencv::simplify_contours_douglas_peucker(
                [&img_ctx, off_x, off_y, scale_x, scale_y](Polygon_i& poly, nopencv::ContourPolarity pol) {

        if (pol == nopencv::CP_HOLE) {
            std::reverse(poly.begin(), poly.end());
            img_ctx.sink() << GRB_POL_CLEAR;

        } else {
            img_ctx.sink() << GRB_POL_DARK;
        }

        ClipperLib::Path out;
        for (const auto &p : poly) {
            d2p q = img_ctx.mat().doc2phys(d2p{
                off_x + (double)p[0] * scale_x,
                off_y + (double)p[1] * scale_y
            });
            out.push_back({
                    (ClipperLib::cInt)round(q[0] * clipper_scale),
                    (ClipperLib::cInt)round(q[1] * clipper_scale)
            });
        }

        ClipperLib::Clipper c;
        c.AddPath(out, ClipperLib::ptSubject, /* closed */ true);
        if (!img_ctx.clip().empty()) {
            c.AddPaths(img_ctx.clip(), ClipperLib::ptClip, /* closed */ true);
        }
        c.StrictlySimple(true);
        ClipperLib::Paths polys;
        c.Execute(ClipperLib::ctIntersection, polys, ClipperLib::pftNonZero, ClipperLib::pftNonZero);

        /* Draw into gerber. */
        for (const auto &poly : polys) {
            vector<array<double, 2>> out;
            for (const auto &p : poly)
                out.push_back(std::array<double, 2>{
                        ((double)p.X) / clipper_scale, ((double)p.Y) / clipper_scale
                        });
            img_ctx.sink() << out;
        }
    }));
}

gerbolyze::VectorizerSelectorizer::VectorizerSelectorizer(const string default_vectorizer, const string defs)
    : m_default(default_vectorizer) {
    istringstream foo(defs);
    string elem;
    while (std::getline(foo, elem, ',')) {
        size_t pos = elem.find_first_of("=");
        if (pos == string::npos) {
            cerr << "Error parsing vectorizer selection string at element \"" << elem << "\"" << endl;
            continue;
        }

        const string parsed_id = elem.substr(0, pos);
        const string mapping = elem.substr(pos+1);
        m_map[parsed_id] = mapping;
    }

    /*
    cerr << "parsed " << m_map.size() << " vectorizers" << endl;
    for (auto &elem : m_map) {
        cerr << "  " << elem.first << " -> " << elem.second << endl;
    }
    */
}

ImageVectorizer *gerbolyze::VectorizerSelectorizer::select(const pugi::xml_node &img) {
    const string id = img.attribute("id").value();
    // cerr << "selecting vectorizer for image \"" << id << "\"" << endl;
    if (m_map.count(id) > 0) {
        // cerr << "  -> found" << endl;
        return makeVectorizer(m_map[id]);
    }

    // cerr << "  -> default" << endl;
    return makeVectorizer(m_default);
}