1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/*
* This file is part of gerbolyze, a vector image preprocessing toolchain
* Copyright (C) 2021 Jan Sebastian Götte <gerbolyze@jaseg.de>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cmath>
#include <algorithm>
#include <string>
#include <iostream>
#include <iomanip>
#include <gerbolyze.hpp>
#include <svg_import_defs.h>
using namespace gerbolyze;
using namespace std;
SimpleGerberOutput::SimpleGerberOutput(ostream &out, bool only_polys, int digits_int, int digits_frac, double scale, d2p offset, bool flip_polarity)
: StreamPolygonSink(out, only_polys),
m_digits_int(digits_int),
m_digits_frac(digits_frac),
m_offset(offset),
m_scale(scale),
m_flip_pol(flip_polarity),
m_current_aperture(0.05),
m_aperture_set(false),
m_macro_aperture(false),
m_aperture_num(10) /* See gerber standard */
{
assert(1 <= digits_int && digits_int <= 9);
assert(0 <= digits_frac && digits_frac <= 9);
m_gerber_scale = round(pow(10, m_digits_frac));
}
void SimpleGerberOutput::header_impl(d2p origin, d2p size) {
m_offset[0] += 0;
m_offset[1] += 2*origin[1] * m_scale; /* FIXME why 2x ? */
m_width = size[0] * m_scale;
m_height = size[1] * m_scale;
if (pow(10, m_digits_int-1) < max(m_width, m_height)) {
cerr << "Warning: Input has bounding box too large for " << m_digits_int << "." << m_digits_frac << " gerber resolution!" << endl;
cerr << " Bounding box in gerber units: " << m_width << " x " << m_height << endl;
}
m_out << "%FSLAX" << m_digits_int << m_digits_frac << "Y" << m_digits_int << m_digits_frac << "*%" << endl;
m_out << "%MOMM*%" << endl;
m_out << "%LPD*%" << endl;
m_out << "G01*" << endl;
m_out << "%ADD10C,0.050000*%" << endl;
m_out << "D10*" << endl;
}
SimpleGerberOutput& SimpleGerberOutput::operator<<(const ApertureToken &ap) {
m_aperture_set = ap.m_has_aperture;
if (!m_macro_aperture && ap.m_size == m_current_aperture) {
return *this;
}
m_macro_aperture = false;
if (m_aperture_set) {
m_current_aperture = ap.m_size;
m_aperture_num += 1;
double size = (ap.m_size > 0.0) ? ap.m_size : 0.05;
m_out << "%ADD" << m_aperture_num << "C," << size << "*%" << endl;
m_out << "D" << m_aperture_num << "*" << endl;
}
return *this;
}
SimpleGerberOutput& SimpleGerberOutput::operator<<(GerberPolarityToken pol) {
assert(pol == GRB_POL_DARK || pol == GRB_POL_CLEAR);
if ((pol == GRB_POL_DARK) != m_flip_pol) {
m_out << "%LPD*%" << endl;
} else {
m_out << "%LPC*%" << endl;
}
return *this;
}
SimpleGerberOutput& SimpleGerberOutput::operator<<(const Polygon &poly) {
if (poly.size() < 3 && !m_aperture_set) {
cerr << "Warning: " << poly.size() << "-element polygon passed to SimpleGerberOutput in region mode" << endl;
return *this;
}
/* NOTE: Clipper and gerber both have different fixed-point scales. We get points in double mm. */
double x = round((poly[0][0] * m_scale + m_offset[0]) * m_gerber_scale);
double y = round((m_height - poly[0][1] * m_scale + m_offset[1]) * m_gerber_scale);
if (!m_aperture_set) {
m_out << "G36*" << endl;
}
m_out << "X" << setw(m_digits_int + m_digits_frac) << setfill('0') << std::internal /* isn't C++ a marvel of engineering? */ << (long long int)x
<< "Y" << setw(m_digits_int + m_digits_frac) << setfill('0') << std::internal << (long long int)y
<< "D02*" << endl;
m_out << "G01*" << endl;
for (size_t i=1; i<poly.size(); i++) {
double x = round((poly[i][0] * m_scale + m_offset[0]) * m_gerber_scale);
double y = round((m_height - poly[i][1] * m_scale + m_offset[1]) * m_gerber_scale);
m_out << "X" << setw(m_digits_int + m_digits_frac) << setfill('0') << std::internal << (long long int)x
<< "Y" << setw(m_digits_int + m_digits_frac) << setfill('0') << std::internal << (long long int)y
<< "D01*" << endl;
}
if (!m_aperture_set) {
m_out << "G37*" << endl;
}
return *this;
}
void SimpleGerberOutput::footer_impl() {
m_out << "M02*" << endl;
}
SimpleGerberOutput &SimpleGerberOutput::operator<<(const FlashToken &tok) {
assert(m_aperture_set);
double x = round((tok.m_offset[0] * m_scale + m_offset[0]) * m_gerber_scale);
double y = round((m_height - tok.m_offset[1] * m_scale + m_offset[1]) * m_gerber_scale);
m_out << "X" << setw(m_digits_int + m_digits_frac) << setfill('0') << std::internal /* isn't C++ a marvel of engineering? */ << (long long int)x
<< "Y" << setw(m_digits_int + m_digits_frac) << setfill('0') << std::internal << (long long int)y
<< "D03*" << endl;
return *this;
}
SimpleGerberOutput &SimpleGerberOutput::operator<<(const PatternToken &tok) {
m_aperture_set = true;
m_macro_aperture = true;
m_aperture_num += 1;
m_out << "%AMmacro" << m_aperture_num << "*" << endl;
for (auto &pair : tok.m_polys) {
int exposure = (pair.second == GRB_POL_DARK) ? 1 : 0;
m_out << 4 << "," << exposure << "," << pair.first.size();
for (auto &pt : pair.first) {
m_out << "," << pt[0] << "," << pt[1];
}
/* We internally represent closed polys as (a - b - c - d), while Gerber aperture macros require the first and
* last vertex to be the same as in (a - b - c - d - a).
*/
m_out << "," << pair.first[0][0] << "," << pair.first[0][1] << "*" << endl;
}
m_out << "%" << endl;
m_out << "%ADD" << m_aperture_num << "macro" << m_aperture_num << "*%" << endl;
m_out << "D" << m_aperture_num << "*" << endl;
return *this;
}
|