aboutsummaryrefslogtreecommitdiff
path: root/svg-flatten/src/nopencv.cpp
blob: e5317f5550c2da35e0b47fd9fcf27aad90741145 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
#include <iostream>
#include <iomanip>
#include <stack>

#include "nopencv.hpp"

#define STB_IMAGE_IMPLEMENTATION
#include <stb_image.h>

#define STB_IMAGE_RESIZE_IMPLEMENTATION
#include <stb_image_resize2.h>

#define IIR_GAUSS_BLUR_IMPLEMENTATION
#include "iir_gauss_blur.h"

template void iir_gauss_blur<uint8_t>(unsigned int width, unsigned int height, unsigned char components, uint8_t* image, float sigma);
template void iir_gauss_blur<uint32_t> (unsigned int width, unsigned int height, unsigned char components, uint32_t* image, float sigma);
template void iir_gauss_blur<float> (unsigned int width, unsigned int height, unsigned char components, float* image, float sigma);

using namespace gerbolyze;
using namespace gerbolyze::nopencv;

static constexpr bool debug = false;

/* directions:
 *        0
 *   7         1
 *        ^   
 *        |
 * 6 <--- X ---> 2
 *        |
 *        v
 *   5         3
 *        4
 *
 */
enum Direction {
    D_N,
    D_NE,
    D_E,
    D_SE,
    D_S,
    D_SW,
    D_W,
    D_NW
};

const char * const dir_str[8] = { "N", "NE", "E", "SE", "S", "SW", "W", "NW" };

static struct {
    int x;
    int y;
} dir_to_coords[8] = {{0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}};

static Direction flip_direction[8] = {
    D_S,  /* 0 */
    D_SW, /* 1 */
    D_W,  /* 2 */
    D_NW, /* 3 */
    D_N,  /* 4 */
    D_NE, /* 5 */
    D_E,  /* 6 */
    D_SE  /* 7 */
};

static void follow(gerbolyze::nopencv::Image32 &img, int start_x, int start_y, Direction initial_direction, int nbd, int connectivity, Polygon_i &poly) {

    if (debug) {
        cerr << "follow " << start_x << " " << start_y << " | dir=" << dir_str[initial_direction] << " nbd=" << nbd << " conn=" << connectivity << endl;
    }

    int dir_inc = (connectivity == 4) ? 2 : 1;

    int probe_x, probe_y;

    /* homing run: find starting point for algorithm steps below. */
    bool found = false;
    int k;
    for (k=initial_direction; k<initial_direction+8; k += dir_inc) {
        probe_x = start_x + dir_to_coords[k % 8].x;
        probe_y = start_y + dir_to_coords[k % 8].y;

        if (img.at_default(probe_x, probe_y) != 0) {
            found = true;
            break;
        }
    }

    if (!found) { /* No nonzero pixels found. This is a single-pixel contour */
        img.at(start_x, start_y) = nbd;
        /* We must return these vertices counter-clockwise! */
        poly.emplace_back(i2p{start_x,   start_y+1});
        poly.emplace_back(i2p{start_x+1, start_y+1});
        poly.emplace_back(i2p{start_x+1, start_y});
        poly.emplace_back(i2p{start_x,   start_y});

        return;
    }

    /* starting point found. */
    int current_direction = k % 8;
    int start_direction = current_direction;
    int center_x = start_x, center_y = start_y;

    if (debug) {
        cerr << "  init: " << center_x << " " << center_y << " / " << dir_str[current_direction] << endl;
    }

    do {
        bool flag = false;
        for (k = current_direction + 8 - dir_inc; k >= current_direction; k -= dir_inc) {
            probe_x = center_x + dir_to_coords[k % 8].x;
            probe_y = center_y + dir_to_coords[k % 8].y;
            if (k%8 == D_E)
                flag = true;

            if (img.at_default(probe_x, probe_y) != 0) {
                break;
            }
        }

        int set_val = 0;
        if (flag && img.at_default(center_x+1, center_y) == 0) {
            img.at(center_x, center_y) = -nbd;
            set_val = -nbd;
        } else if (img.at(center_x, center_y) == 1) {
            img.at(center_x, center_y) = nbd;
            set_val = nbd;
        }

        for (int l = (current_direction + 8 - 2 + 1) / 2 * 2; l > k; l -= dir_inc) {
            switch (l%8) {
                case 0: poly.emplace_back(i2p{center_x,   center_y}); break;
                case 2: poly.emplace_back(i2p{center_x+1, center_y}); break;
                case 4: poly.emplace_back(i2p{center_x+1, center_y+1}); break;
                case 6: poly.emplace_back(i2p{center_x,   center_y+1}); break;
            }
        }

        center_x = probe_x;
        center_y = probe_y;
        current_direction = flip_direction[k % 8];

        if (debug) {
            cerr << "  " << center_x << " " << center_y << " / " << dir_str[current_direction] << " -> " << set_val << endl;
        }
    } while (center_x != start_x || center_y != start_y || current_direction != start_direction);
}


void gerbolyze::nopencv::find_contours(gerbolyze::nopencv::Image32 &img, gerbolyze::nopencv::ContourCallback cb) {
    /* Implementation of the hierarchical contour finding algorithm from Suzuki and Abe, 1983: Topological Structural
     * Analysis of Digitized Binary Images by Border Following
     *
     * Written with these two resources as reference:
     *     https://theailearner.com/tag/suzuki-contour-algorithm-opencv/
     *     https://github.com/FreshJesh5/Suzuki-Algorithm/blob/master/contoursv1/contoursv1.cpp
     *
     * WARNING: input image MUST BE BINARIZE: All pixels must have value either 0 or 1. Otherwise, chaos ensues.
     */
    int nbd = 1;
    Polygon_i poly;
    for (int y=0; y<img.rows(); y++) {
        for (int x=0; x<img.cols(); x++) {
            int val_xy = img.at(x, y);
            /* Note: outer borders are followed with 8-connectivity, hole borders with 4-connectivity. This prevents
             * incorrect results in this case:
             *
             *    1   1   1 | 0   0   0
             *              |
             *    1   1   1 | 0   0   0
             *    ----------+---------- <== Here
             *    0   0   0 | 1   1   1
             *              |
             *    0   0   0 | 1   1   1
             */
            if (img.at_default(x-1, y) == 0 && val_xy == 1) { /* outer border starting point */
                nbd += 1;
                follow(img, x, y, D_W, nbd, 8, poly);
                cb(poly, CP_CONTOUR);
                poly.clear();

            } else if (val_xy >= 1 && img.at_default(x+1, y) == 0) { /* hole border starting point */
                nbd += 1;
                follow(img, x, y, D_E, nbd, 8, poly); /* FIXME should be 4? */
                cb(poly, CP_HOLE);
                poly.clear();
            }
        }
    }
}

static size_t region_of_support(Polygon_i poly, size_t i) { 
    double x0 = poly[i][0], y0 = poly[i][1];
    size_t sz = poly.size();
    double last_l = 0;
    double last_r = 0;
    size_t k;
    //cerr << "d: ";
    for (k=1; k<(sz+1)/2; k++) {
        size_t idx1 = (i + k) % sz;
        size_t idx2 = (i + sz - k) % sz;
        double x1 = poly[idx1][0], y1 = poly[idx1][1], x2 = poly[idx2][0], y2 = poly[idx2][1];
        double l = sqrt(pow(x2-x1, 2) + pow(y2-y1, 2));
        /* https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
         * TODO: Check whether distance-to-line is an ok implementation here, the paper asks for distance to chord.
         */
        double d = ((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / sqrt(pow(x2-x1, 2) + pow(y2-y1, 2));
        //cerr << d << " ";
        double r = d/l;

        bool cond_a = l < last_l;
        bool cond_b = ((d > 0) && (r < last_r)) || ((d < 0) && (r > last_r));

        if (k > 2 && (cond_a || cond_b))
            break;

        last_l = l;
        last_r = r;
    }
    //cerr << endl;
    k -= 1;
    return k;
}

int freeman_angle(const Polygon_i &poly, size_t i) {
    /* f:
     *        2
     *   3         1
     *        ^   
     *        |
     * 4 <--- X ---> 0
     *        |
     *        v
     *   5         7
     *        6
     *
     */
    size_t sz = poly.size();

    auto &p_last = poly[(i + sz - 1) % sz];
    auto &p_now = poly[i];
    auto dx = p_now[0] - p_last[0];
    auto dy = p_now[1] - p_last[1];
    /* both points must be neighbors */
    assert (-1 <= dx && dx <= 1);
    assert (-1 <= dy && dy <= 1);
    assert (!(dx == 0 && dy == 0));

    int lut[3][3] = {{3, 2, 1}, {4, -1, 0}, {5, 6, 7}};
    return lut[dy+1][dx+1];
}

double k_curvature(const Polygon_i &poly, size_t i, size_t k) {
    size_t sz = poly.size();
    double acc = 0;
    for (size_t idx = 0; idx < k; idx++) {
        acc += freeman_angle(poly, (i + 2*sz - idx) % sz) - freeman_angle(poly, (i+idx + 1) % sz);
    }
    return acc / k;
}

double k_cos(const Polygon_i &poly, size_t i, size_t k) {
    size_t sz = poly.size();
    int64_t x0 = poly[i][0], y0 = poly[i][1];
    int64_t x1 = poly[(i + sz + k) % sz][0], y1 = poly[(i + sz + k) % sz][1];
    int64_t x2 = poly[(i + sz - k) % sz][0], y2 = poly[(i + sz - k) % sz][1];
    auto xa = x0 - x1, ya = y0 - y1;
    auto xb = x0 - x2, yb = y0 - y2;
    auto dp = xa*yb + ya*xb;
    auto sq_a = xa*xa + ya*ya;
    auto sq_b = xb*xb + yb*yb;
    return dp / (sqrt(sq_a)*sqrt(sq_b));
}

ContourCallback gerbolyze::nopencv::simplify_contours_teh_chin(ContourCallback cb) {
    return [&cb](Polygon_i &poly, ContourPolarity cpol) {
        size_t sz = poly.size();
        vector<size_t> ros(sz);
        vector<double> sig(sz);
        vector<double> cur(sz);
        vector<bool> retain(sz);
        for (size_t i=0; i<sz; i++) {
            ros[i] = region_of_support(poly, i);
            sig[i] = fabs(k_cos(poly, i, ros[i]));
            cur[i] = k_curvature(poly, i, 1);
            retain[i] = true;
        }

        if (debug) {
            cerr << endl;
            cerr << "Polarity: " << cpol <<endl;
            cerr << "Coords:"<<endl;
            cerr << "  x: ";
            for (size_t i=0; i<sz; i++) {
                cerr << setfill(' ') << setw(2) << poly[i][0] << " ";
            }
            cerr << endl;
            cerr << "  y: ";
            for (size_t i=0; i<sz; i++) {
                cerr << setfill(' ') << setw(2) << poly[i][1] << " ";
            }
            cerr << endl;
            cerr << "Metrics:"<<endl;
            cerr << "ros: ";
            for (size_t i=0; i<sz; i++) {
                cerr << setfill(' ') << setw(2) << ros[i] << " ";
            }
            cerr << endl;
            cerr << "sig: ";
            for (size_t i=0; i<sz; i++) {
                cerr << setfill(' ') << setw(2) << sig[i] << " ";
            }
            cerr << endl;
        }

        /* Pass 0 (like opencv): Remove points with zero 1-curvature */
        for (size_t i=0; i<sz; i++) {
            if (cur[i] == 0) {
                retain[i] = false;
                break;
            }
        }

        if (debug) {
            cerr << "pass 0: ";
            for (size_t i=0; i<sz; i++) {
                cerr << (retain[i] ? "#" : ".");
            }
            cerr << endl;
        }

        /* 3a, Pass 1: Non-maxima suppression */
        for (size_t i=0; i<sz; i++) {
            for (size_t j=1; j<ros[i]/2; j++) {
                if (sig[i] < sig[(i + j) % sz] || sig[i] < sig[(i + sz - j) % sz]) {
                    retain[i] = false;
                    break;
                }
            }
        }

        if (debug) {
            cerr << "pass 1: ";
            for (size_t i=0; i<sz; i++) {
                cerr << (retain[i] ? "#" : ".");
            }
            cerr << endl;
        }
        
        /* 3b, Pass 2: Zero-curvature suppression */
        for (size_t i=0; i<sz; i++) {
            if (retain[i] && ros[i] == 1) {
                if (sig[i] <= sig[(i + 1) % sz] || sig[i] <= sig[(i + sz - 1) % sz]) {
                    retain[i] = false;
                }
            }
        }

        if (debug) {
            cerr << "pass 2: ";
            for (size_t i=0; i<sz; i++) {
                cerr << (retain[i] ? "#" : ".");
            }
            cerr << endl;
        }

        /* 3c, Pass 3: Further thinning */
        for (size_t i=0; i<sz; i++) {
            if (retain[i]) {
                if (ros[i] == 1) {
                    if (retain[(i + sz - 1) % sz] || retain[(i + 1)%sz]) {
                        if (sig[i] < sig[(i + sz - 1)%sz] || sig[i] < sig[(i + 1)%sz]) {
                            retain[i] = false;
                        }
                    }
                }
            }
        }

        if (debug) {
            cerr << "pass 3: ";
            for (size_t i=0; i<sz; i++) {
                cerr << (retain[i] ? "#" : ".");
            }
            cerr << endl;
        }

        Polygon_i new_poly;
        for (size_t i=0; i<sz; i++) {
            if (retain[i]) {
                new_poly.push_back(poly[i]);
            }
        }
        
        if (!new_poly.empty()) {
            cb(new_poly, cpol);
        }
    };
}

static double dp_eps(double dx, double dy) {
    /* Implementation of:
     *
     * Prasad, Dilip K., et al. "A novel framework for making dominant point detection methods non-parametric."
     * Image and Vision Computing 30.11 (2012): 843-859.
     * https://core.ac.uk/download/pdf/131287229.pdf
     *
     * For another implementation, see:
     * https://github.com/BobLd/RamerDouglasPeuckerNetV2/blob/master/RamerDouglasPeuckerNetV2.Test/RamerDouglasPeuckerNetV2/RamerDouglasPeucker.cs
     */
    double m = dy / dx;
    double s = sqrt(pow(dx, 2) + pow(dy, 2));
    double phi = atan(m);
    double t_max = 1/s * (fabs(cos(phi)) + fabs(sin(phi)));
    double t_max_polynomial = 1 - t_max + pow(t_max, 2);
    return s * fmax(
            atan(1/s * fabs(sin(phi) + cos(phi)) * t_max_polynomial),
            atan(1/s * fabs(sin(phi) - cos(phi)) * t_max_polynomial));
}

/* a, b inclusive */
static array<size_t, 3> dp_step(Polygon_i &poly, size_t a, size_t b) {

    double dx = poly[b][0] - poly[a][0];
    double dy = poly[b][1] - poly[a][1];
    double eps = dp_eps(dx, dy);

    size_t max_idx = 0;
    double max_dist = 0;
    /* https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line */
    double dist_ab = sqrt(pow(poly[b][0] - poly[a][0], 2) + pow(poly[b][1] - poly[a][1], 2));
    for (size_t i=a+1; i<b; i++) {
        double dist_i = fabs(
                  (poly[b][0] - poly[a][0]) * (poly[a][1] - poly[i][1])
                - (poly[a][0] - poly[i][0]) * (poly[b][1] - poly[a][1]))
            / dist_ab;
        if (dist_i > max_dist && dist_i > eps) {
            max_dist = dist_i;
            max_idx = i;
        }
    }

    return {a, max_idx, b};
}

ContourCallback gerbolyze::nopencv::simplify_contours_douglas_peucker(ContourCallback cb) {
    return [&cb](Polygon_i &poly, ContourPolarity cpol) {

        Polygon_i out;
        out.push_back(poly[0]);

        stack<array<size_t, 3>> indices;
        indices.push(dp_step(poly, 0, poly.size()-1));

        while (!indices.empty()) {
            auto idx = indices.top();
            indices.pop(); /* awesome C++ api let's goooooo */

            if (idx[1] > 0) {
                indices.push(dp_step(poly, idx[0], idx[1]));

                indices.push(dp_step(poly, idx[1], idx[2]));

            } else {
                out.push_back(poly[idx[2]]);
            }
        }


        cb(out, cpol);
    };
}

double gerbolyze::nopencv::polygon_area(Polygon_i &poly) {
    double acc = 0;
    size_t prev = poly.size() - 1;
    for (size_t cur=0; cur<poly.size(); cur++) {
        acc += (poly[prev][0] + poly[cur][0]) * (poly[prev][1] - poly[cur][1]);
        prev = cur;
    }
    return acc / 2;
}

double gerbolyze::nopencv::polygon_perimeter(Polygon_i &poly) {
    double acc = 0;
    size_t prev = poly.size() - 1;
    for (size_t cur=0; cur<poly.size(); cur++) {
        double dx = poly[cur][0] - poly[prev][0];
        double dy = poly[cur][1] - poly[prev][1];
        acc += sqrt(dx*dx + dy*dy);
        prev = cur;
    }
    return acc;
}

d2p gerbolyze::nopencv::polygon_centroid(Polygon_i &poly) {
    double acc_x = 0, acc_y = 0;

    double area = polygon_area(poly);
    size_t prev = poly.size() - 1;
    for (size_t cur=0; cur<poly.size(); cur++) {
        double a = poly[prev][1]*poly[cur][0] - poly[cur][1]*poly[prev][0];
        acc_x += (poly[prev][0] + poly[cur][0]) * a;
        acc_y += (poly[prev][1] + poly[cur][1]) * a;
        prev = cur;
    }

    return { acc_x / (6*area), acc_y / (6*area) };
}

template<typename T>
gerbolyze::nopencv::Image<T>::Image(int size_x, int size_y, const T *data) {
    assert(size_x > 0 && size_x < 100000);
    assert(size_y > 0 && size_y < 100000);
    m_data = new T[size_x * size_y] { 0 };
    m_rows = size_y;
    m_cols = size_x;
    if (data != nullptr) {
        memcpy(m_data, data, sizeof(T) * size_x * size_y);
    }
}

template<typename T>
bool gerbolyze::nopencv::Image<T>::load(const char *filename) {
    return stb_to_internal(stbi_load(filename, &m_cols, &m_rows, nullptr, 1));
}

template<typename T>
bool gerbolyze::nopencv::Image<T>::load_memory(const void *buf, size_t len) {
    return stb_to_internal(stbi_load_from_memory(reinterpret_cast<const uint8_t *>(buf), len, &m_cols, &m_rows, nullptr, 1));
}

template<typename T>
void gerbolyze::nopencv::Image<T>::binarize(T threshold) {
    assert(m_data != nullptr);
    assert(m_rows > 0 && m_cols > 0);

    for (int y=0; y<m_rows; y++) {
        for (int x=0; x<m_cols; x++) {
            m_data[y*m_cols + x] = m_data[y*m_cols + x] >= threshold;
        }
    }
}

template<typename T>
bool gerbolyze::nopencv::Image<T>::stb_to_internal(uint8_t *data) {
    if (data == nullptr)
        return false;

    if (m_rows < 0 || m_rows > 100000)
        return false;
    if (m_cols < 0 || m_cols > 100000)
        return false;

    m_data = new T[size()] { 0 };
    for (int y=0; y<m_rows; y++) {
        for (int x=0; x<m_cols; x++) {
            m_data[y*m_cols + x] = data[y*m_cols + x];
        }
    }

    stbi_image_free(data);
    return true;
}

template<typename T>
void gerbolyze::nopencv::Image<T>::blur(int radius) {
    iir_gauss_blur(m_cols, m_rows, 1, m_data, radius/2.0);
}

template<>
void gerbolyze::nopencv::Image<float>::resize(int new_w, int new_h) {
    float *old_data = m_data;
    m_data = new float[new_w * new_h];
    stbir_resize_float_linear(old_data, m_cols, m_rows, 0,
                        m_data, new_w, new_h, 0,
                        STBIR_1CHANNEL);
    m_cols = new_w;
    m_rows = new_h;
    delete old_data;
}

template<>
void gerbolyze::nopencv::Image<uint8_t>::resize(int new_w, int new_h) {
    uint8_t *old_data = m_data;
    m_data = new uint8_t[new_w * new_h];
    stbir_resize_uint8_linear(old_data, m_cols, m_rows, 0,
                        m_data, new_w, new_h, 0,
                        STBIR_1CHANNEL);
    m_cols = new_w;
    m_rows = new_h;
    delete old_data;
}

template gerbolyze::nopencv::Image<int32_t>::Image(int size_x, int size_y, const int32_t *data);
template bool gerbolyze::nopencv::Image<int32_t>::load(const char *filename);
template bool gerbolyze::nopencv::Image<int32_t>::load_memory(const void *buf, size_t len);
template void gerbolyze::nopencv::Image<int32_t>::binarize(int32_t threshold);
template bool gerbolyze::nopencv::Image<int32_t>::stb_to_internal(uint8_t *data);
template void gerbolyze::nopencv::Image<int32_t>::blur(int radius);

template gerbolyze::nopencv::Image<uint8_t>::Image(int size_x, int size_y, const uint8_t *data);
template bool gerbolyze::nopencv::Image<uint8_t>::load(const char *filename);
template bool gerbolyze::nopencv::Image<uint8_t>::load_memory(const void *buf, size_t len);
template void gerbolyze::nopencv::Image<uint8_t>::binarize(uint8_t threshold);
template bool gerbolyze::nopencv::Image<uint8_t>::stb_to_internal(uint8_t *data);
template void gerbolyze::nopencv::Image<uint8_t>::blur(int radius);

template gerbolyze::nopencv::Image<float>::Image(int size_x, int size_y, const float *data);
template bool gerbolyze::nopencv::Image<float>::load(const char *filename);
template bool gerbolyze::nopencv::Image<float>::load_memory(const void *buf, size_t len);
template void gerbolyze::nopencv::Image<float>::binarize(float threshold);
template bool gerbolyze::nopencv::Image<float>::stb_to_internal(uint8_t *data);
template void gerbolyze::nopencv::Image<float>::blur(int radius);