1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
#include <iostream>
#include <iomanip>
#include "nopencv.hpp"
using namespace gerbolyze;
using namespace gerbolyze::nopencv;
/* directions:
* 0
* 7 1
* ^
* |
* 6 <--- X ---> 2
* |
* v
* 5 3
* 4
*
*/
enum Direction {
D_N,
D_NE,
D_E,
D_SE,
D_S,
D_SW,
D_W,
D_NW
};
//const char * const dir_str[8] = { "N", "NE", "E", "SE", "S", "SW", "W", "NW" };
static struct {
int x;
int y;
} dir_to_coords[8] = {{0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}};
static Direction flip_direction[8] = {
D_S, /* 0 */
D_SW, /* 1 */
D_W, /* 2 */
D_NW, /* 3 */
D_N, /* 4 */
D_NE, /* 5 */
D_E, /* 6 */
D_SE /* 7 */
};
static void follow(gerbolyze::nopencv::Image32 &img, int start_x, int start_y, Direction initial_direction, int nbd, int connectivity, Polygon_i &poly) {
//cerr << "follow " << start_x << " " << start_y << " | dir=" << dir_str[initial_direction] << " nbd=" << nbd << " conn=" << connectivity << endl;
int dir_inc = (connectivity == 4) ? 2 : 1;
int probe_x, probe_y;
/* homing run: find starting point for algorithm steps below. */
bool found = false;
int k;
for (k=initial_direction; k<initial_direction+8; k += dir_inc) {
probe_x = start_x + dir_to_coords[k % 8].x;
probe_y = start_y + dir_to_coords[k % 8].y;
if (img.at_default(probe_x, probe_y) != 0) {
found = true;
break;
}
}
if (!found) { /* No nonzero pixels found. This is a single-pixel contour */
img.at(start_x, start_y) = nbd;
poly.emplace_back(i2p{start_x, start_y});
poly.emplace_back(i2p{start_x+1, start_y});
poly.emplace_back(i2p{start_x+1, start_y+1});
poly.emplace_back(i2p{start_x, start_y+1});
return;
}
/* starting point found. */
int current_direction = k % 8;
int start_direction = current_direction;
int center_x = start_x, center_y = start_y;
//cerr << " init: " << center_x << " " << center_y << " / " << dir_str[current_direction] << endl;
do {
bool flag = false;
for (k = current_direction + 8 - dir_inc; k >= current_direction; k -= dir_inc) {
probe_x = center_x + dir_to_coords[k % 8].x;
probe_y = center_y + dir_to_coords[k % 8].y;
if (k%8 == D_E)
flag = true;
if (img.at_default(probe_x, probe_y) != 0) {
break;
}
}
int set_val = 0;
if (flag && img.at_default(center_x+1, center_y) == 0) {
img.at(center_x, center_y) = -nbd;
set_val = -nbd;
} else if (img.at(center_x, center_y) == 1) {
img.at(center_x, center_y) = nbd;
set_val = nbd;
}
for (int l = (current_direction + 8 - 2 + 1) / 2 * 2; l > k; l -= dir_inc) {
switch (l%8) {
case 0: poly.emplace_back(i2p{center_x, center_y}); break;
case 2: poly.emplace_back(i2p{center_x+1, center_y}); break;
case 4: poly.emplace_back(i2p{center_x+1, center_y+1}); break;
case 6: poly.emplace_back(i2p{center_x, center_y+1}); break;
}
}
center_x = probe_x;
center_y = probe_y;
current_direction = flip_direction[k % 8];
//cerr << " " << center_x << " " << center_y << " / " << dir_str[current_direction] << " -> " << set_val << endl;
} while (center_x != start_x || center_y != start_y || current_direction != start_direction);
}
void gerbolyze::nopencv::find_blobs(gerbolyze::nopencv::Image32 &img, gerbolyze::nopencv::ContourCallback cb) {
/* Implementation of the hierarchical contour finding algorithm from Suzuki and Abe, 1983: Topological Structural
* Analysis of Digitized Binary Images by Border Following
*
* Written with these two resources as reference:
* https://theailearner.com/tag/suzuki-contour-algorithm-opencv/
* https://github.com/FreshJesh5/Suzuki-Algorithm/blob/master/contoursv1/contoursv1.cpp
*/
int nbd = 1;
Polygon_i poly;
for (int y=0; y<img.rows(); y++) {
for (int x=0; x<img.cols(); x++) {
int val_xy = img.at(x, y);
/* Note: outer borders are followed with 8-connectivity, hole borders with 4-connectivity. This prevents
* incorrect results in this case:
*
* 1 1 1 | 0 0 0
* |
* 1 1 1 | 0 0 0
* ----------+---------- <== Here
* 0 0 0 | 1 1 1
* |
* 0 0 0 | 1 1 1
*/
if (img.at_default(x-1, y) == 0 && val_xy == 1) { /* outer border starting point */
nbd += 1;
follow(img, x, y, D_W, nbd, 8, poly);
cb(poly, CP_CONTOUR);
poly.clear();
} else if (val_xy >= 1 && img.at_default(x+1, y) == 0) { /* hole border starting point */
nbd += 1;
follow(img, x, y, D_E, nbd, 8, poly); /* FIXME should be 4? */
cb(poly, CP_HOLE);
poly.clear();
}
}
}
}
static size_t region_of_support(Polygon_i poly, size_t i) {
double x0 = poly[i][0], y0 = poly[i][1];
size_t sz = poly.size();
double last_l = 0;
double last_r = 0;
size_t k;
//cerr << "d: ";
for (k=1; k<(sz+1)/2; k++) {
size_t idx1 = (i + k) % sz;
size_t idx2 = (i + sz - k) % sz;
double x1 = poly[idx1][0], y1 = poly[idx1][1], x2 = poly[idx2][0], y2 = poly[idx2][1];
double l = sqrt(pow(x2-x1, 2) + pow(y2-y1, 2));
/* https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
* TODO: Check whether distance-to-line is an ok implementation here, the paper asks for distance to chord.
*/
double d = ((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / sqrt(pow(x2-x1, 2) + pow(y2-y1, 2));
//cerr << d << " ";
double r = d/l;
bool cond_a = l < last_l;
bool cond_b = ((d > 0) && (r < last_r)) || ((d < 0) && (r > last_r));
if (k > 2 && (cond_a || cond_b))
break;
last_l = l;
last_r = r;
}
//cerr << endl;
k -= 1;
return k;
}
int freeman_angle(const Polygon_i &poly, size_t i) {
/* f:
* 2
* 3 1
* ^
* |
* 4 <--- X ---> 0
* |
* v
* 5 7
* 6
*
*/
size_t sz = poly.size();
auto &p_last = poly[(i + sz - 1) % sz];
auto &p_now = poly[i];
auto dx = p_now[0] - p_last[0];
auto dy = p_now[1] - p_last[1];
/* both points must be neighbors */
assert (-1 <= dx && dx <= 1);
assert (-1 <= dy && dy <= 1);
assert (!(dx == 0 && dy == 0));
int lut[3][3] = {{3, 2, 1}, {4, -1, 0}, {5, 6, 7}};
return lut[dy+1][dx+1];
}
double k_curvature(const Polygon_i &poly, size_t i, size_t k) {
size_t sz = poly.size();
double acc = 0;
for (size_t idx = 0; idx < k; idx++) {
acc += freeman_angle(poly, (i + 2*sz - idx) % sz) - freeman_angle(poly, (i+idx + 1) % sz);
}
return acc / k;
}
double k_cos(const Polygon_i &poly, size_t i, size_t k) {
size_t sz = poly.size();
int64_t x0 = poly[i][0], y0 = poly[i][1];
int64_t x1 = poly[(i + sz + k) % sz][0], y1 = poly[(i + sz + k) % sz][1];
int64_t x2 = poly[(i + sz - k) % sz][0], y2 = poly[(i + sz - k) % sz][1];
auto xa = x0 - x1, ya = y0 - y1;
auto xb = x0 - x2, yb = y0 - y2;
auto dp = xa*yb + ya*xb;
auto sq_a = xa*xa + ya*ya;
auto sq_b = xb*xb + yb*yb;
return dp / (sqrt(sq_a)*sqrt(sq_b));
}
ContourCallback gerbolyze::nopencv::simplify_contours_teh_chin(ContourCallback cb) {
return [&cb](Polygon_i &poly, ContourPolarity cpol) {
size_t sz = poly.size();
vector<size_t> ros(sz);
vector<double> sig(sz);
vector<double> cur(sz);
vector<bool> retain(sz);
for (size_t i=0; i<sz; i++) {
ros[i] = region_of_support(poly, i);
sig[i] = fabs(k_cos(poly, i, ros[i]));
cur[i] = k_curvature(poly, i, 1);
retain[i] = true;
}
cerr << endl;
cerr << "Polarity: " << cpol <<endl;
cerr << "Coords:"<<endl;
cerr << " x: ";
for (size_t i=0; i<sz; i++) {
cerr << setfill(' ') << setw(2) << poly[i][0] << " ";
}
cerr << endl;
cerr << " y: ";
for (size_t i=0; i<sz; i++) {
cerr << setfill(' ') << setw(2) << poly[i][1] << " ";
}
cerr << endl;
cerr << "Metrics:"<<endl;
cerr << "ros: ";
for (size_t i=0; i<sz; i++) {
cerr << setfill(' ') << setw(2) << ros[i] << " ";
}
cerr << endl;
cerr << "sig: ";
for (size_t i=0; i<sz; i++) {
cerr << setfill(' ') << setw(2) << sig[i] << " ";
}
cerr << endl;
/* Pass 0 (like opencv): Remove points with zero 1-curvature */
for (size_t i=0; i<sz; i++) {
if (cur[i] == 0) {
retain[i] = false;
break;
}
}
cerr << "pass 0: ";
for (size_t i=0; i<sz; i++) {
cerr << (retain[i] ? "#" : ".");
}
cerr << endl;
/* 3a, Pass 1: Non-maxima suppression */
for (size_t i=0; i<sz; i++) {
for (size_t j=1; j<ros[i]/2; j++) {
if (sig[i] < sig[(i + j) % sz] || sig[i] < sig[(i + sz - j) % sz]) {
retain[i] = false;
break;
}
}
}
cerr << "pass 1: ";
for (size_t i=0; i<sz; i++) {
cerr << (retain[i] ? "#" : ".");
}
cerr << endl;
/* 3b, Pass 2: Zero-curvature suppression */
for (size_t i=0; i<sz; i++) {
if (retain[i] && ros[i] == 1) {
if (sig[i] <= sig[(i + 1) % sz] || sig[i] <= sig[(i + sz - 1) % sz]) {
retain[i] = false;
}
}
}
cerr << "pass 2: ";
for (size_t i=0; i<sz; i++) {
cerr << (retain[i] ? "#" : ".");
}
cerr << endl;
/* 3c, Pass 3: Further thinning */
for (size_t i=0; i<sz; i++) {
if (retain[i]) {
if (ros[i] == 1) {
if (retain[(i + sz - 1) % sz] || retain[(i + 1)%sz]) {
if (sig[i] < sig[(i + sz - 1)%sz] || sig[i] < sig[(i + 1)%sz]) {
retain[i] = false;
}
}
}
}
}
cerr << "pass 3: ";
for (size_t i=0; i<sz; i++) {
cerr << (retain[i] ? "#" : ".");
}
cerr << endl;
Polygon_i new_poly;
for (size_t i=0; i<sz; i++) {
if (retain[i]) {
new_poly.push_back(poly[i]);
}
}
cb(new_poly, cpol);
};
}
|