1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
/* Copied from Antigrain Graphics (AGG) v2.4 */
/* Mirror: https://github.com/pelson/antigrain/blob/master/agg-2.4/src/agg_curves.cpp */
#include <flatten.hpp>
#include <cmath>
using namespace gerbolyze;
namespace gerbolyze {
const double curve_collinearity_epsilon = 1e-15;
const double curve_angle_tolerance_epsilon = 0.1;
constexpr unsigned curve_recursion_limit = 20;
}
static inline double calc_sq_distance(double x1, double y1, double x2, double y2)
{
double dx = x2-x1;
double dy = y2-y1;
return dx * dx + dy * dy;
}
void curve4_div::run(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4) {
m_points.clear();
m_points.emplace_back(d2p{x1, y1});
recursive_bezier(x1, y1, x2, y2, x3, y3, x4, y4, 0);
m_points.emplace_back(d2p{x4, y4});
}
void curve4_div::recursive_bezier(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4,
unsigned level)
{
if(level > curve_recursion_limit) {
return;
}
double pi = M_PI;
// Calculate all the mid-points of the line segments
//----------------------
double x12 = (x1 + x2) / 2;
double y12 = (y1 + y2) / 2;
double x23 = (x2 + x3) / 2;
double y23 = (y2 + y3) / 2;
double x34 = (x3 + x4) / 2;
double y34 = (y3 + y4) / 2;
double x123 = (x12 + x23) / 2;
double y123 = (y12 + y23) / 2;
double x234 = (x23 + x34) / 2;
double y234 = (y23 + y34) / 2;
double x1234 = (x123 + x234) / 2;
double y1234 = (y123 + y234) / 2;
// Try to approximate the full cubic curve by a single straight line
//------------------
double dx = x4-x1;
double dy = y4-y1;
double d2 = fabs(((x2 - x4) * dy - (y2 - y4) * dx));
double d3 = fabs(((x3 - x4) * dy - (y3 - y4) * dx));
double da1, da2, k;
switch((int(d2 > curve_collinearity_epsilon) << 1) +
int(d3 > curve_collinearity_epsilon))
{
case 0:
// All collinear OR p1==p4
//----------------------
k = dx*dx + dy*dy;
if(k == 0) {
d2 = calc_sq_distance(x1, y1, x2, y2);
d3 = calc_sq_distance(x4, y4, x3, y3);
} else {
k = 1 / k;
da1 = x2 - x1;
da2 = y2 - y1;
d2 = k * (da1*dx + da2*dy);
da1 = x3 - x1;
da2 = y3 - y1;
d3 = k * (da1*dx + da2*dy);
if(d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1) {
// Simple collinear case, 1---2---3---4
// We can leave just two endpoints
return;
}
if(d2 <= 0) {
d2 = calc_sq_distance(x2, y2, x1, y1);
} else if(d2 >= 1) {
d2 = calc_sq_distance(x2, y2, x4, y4);
} else {
d2 = calc_sq_distance(x2, y2, x1 + d2*dx, y1 + d2*dy);
}
if(d3 <= 0) {
d3 = calc_sq_distance(x3, y3, x1, y1);
} else if(d3 >= 1) {
d3 = calc_sq_distance(x3, y3, x4, y4);
} else {
d3 = calc_sq_distance(x3, y3, x1 + d3*dx, y1 + d3*dy);
}
}
if(d2 > d3) {
if(d2 < m_distance_tolerance_square) {
m_points.emplace_back(d2p{x2, y2});
return;
}
} else {
if(d3 < m_distance_tolerance_square) {
m_points.emplace_back(d2p{x3, y3});
return;
}
}
break;
case 1:
// p1,p2,p4 are collinear, p3 is significant
//----------------------
if(d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy)) {
if(m_angle_tolerance < curve_angle_tolerance_epsilon) {
m_points.emplace_back(d2p{x23, y23});
return;
}
// Angle Condition
//----------------------
da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2));
if(da1 >= pi) da1 = 2*pi - da1;
if(da1 < m_angle_tolerance) {
m_points.emplace_back(d2p{x2, y2});
m_points.emplace_back(d2p{x3, y3});
return;
}
if(m_cusp_limit != 0.0) {
if(da1 > m_cusp_limit)
{
m_points.emplace_back(d2p{x3, y3});
return;
}
}
}
break;
case 2:
// p1,p3,p4 are collinear, p2 is significant
//----------------------
if(d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy)) {
if(m_angle_tolerance < curve_angle_tolerance_epsilon) {
m_points.emplace_back(d2p{x23, y23});
return;
}
// Angle Condition
//----------------------
da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
if(da1 >= pi) da1 = 2*pi - da1;
if(da1 < m_angle_tolerance) {
m_points.emplace_back(d2p{x2, y2});
m_points.emplace_back(d2p{x3, y3});
return;
}
if(m_cusp_limit != 0.0) {
if(da1 > m_cusp_limit) {
m_points.emplace_back(d2p{x2, y2});
return;
}
}
}
break;
case 3:
// Regular case
//-----------------
if((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy))
{
// If the curvature doesn't exceed the distance_tolerance value
// we tend to finish subdivisions.
//----------------------
if(m_angle_tolerance < curve_angle_tolerance_epsilon) {
m_points.emplace_back(d2p{x23, y23});
return;
}
// Angle & Cusp Condition
//----------------------
k = atan2(y3 - y2, x3 - x2);
da1 = fabs(k - atan2(y2 - y1, x2 - x1));
da2 = fabs(atan2(y4 - y3, x4 - x3) - k);
if(da1 >= pi) da1 = 2*pi - da1;
if(da2 >= pi) da2 = 2*pi - da2;
if(da1 + da2 < m_angle_tolerance) {
// Finally we can stop the recursion
//----------------------
m_points.emplace_back(d2p{x23, y23});
return;
}
if(m_cusp_limit != 0.0) {
if(da1 > m_cusp_limit) {
m_points.emplace_back(d2p{x2, y2});
return;
}
if(da2 > m_cusp_limit) {
m_points.emplace_back(d2p{x3, y3});
return;
}
}
}
break;
}
// Continue subdivision
//----------------------
recursive_bezier(x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1);
recursive_bezier(x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1);
}
|