1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2021 Jan Sebastian Götte <kicad@jaseg.de>
* Copyright (C) 2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <cmath>
#include <assert.h>
#include <iostream>
#include <sstream>
#include "cairo_clipper.hpp"
#include "svg_import_defs.h"
#include "svg_path.h"
using namespace std;
static void clipper_add_cairo_path(cairo_t *cr, ClipperLib::Clipper &c, bool closed) {
ClipperLib::Paths in_poly;
ClipperLib::cairo::cairo_to_clipper(cr, in_poly, CAIRO_PRECISION, ClipperLib::cairo::tNone);
c.AddPaths(in_poly, ClipperLib::ptSubject, closed);
}
static void path_to_clipper_via_cairo(cairo_t *cr, ClipperLib::Clipper &c, const pugi::char_t *path_data) {
istringstream d(path_data);
string cmd;
double x, y, c1x, c1y, c2x, c2y;
bool first = true;
bool path_is_empty = true;
while (!d.eof()) {
d >> cmd;
assert (!d.fail());
assert(!first || cmd == "M");
if (cmd == "Z") { /* Close path */
cairo_close_path(cr);
clipper_add_cairo_path(cr, c, /* closed= */ true);
cairo_new_path(cr);
path_is_empty = true;
} else if (cmd == "M") { /* Move to */
d >> x >> y;
/* We need to transform all points ourselves here, and cannot use the transform feature of cairo_to_clipper:
* Our transform may contain offsets, and clipper only passes its data into cairo's transform functions
* after scaling up to its internal fixed-point ints, but it does not scale the transform accordingly. This
* means a scale/rotation we set before calling clipper works out fine, but translations get lost as they
* get scaled by something like 1e-6.
*/
cairo_user_to_device(cr, &x, &y);
assert (!d.fail());
if (!first)
clipper_add_cairo_path(cr, c, /* closed= */ false);
cairo_new_path (cr);
path_is_empty = true;
cairo_move_to(cr, x, y);
} else if (cmd == "L") { /* Line to */
d >> x >> y;
cairo_user_to_device(cr, &x, &y);
assert (!d.fail());
cairo_line_to(cr, x, y);
path_is_empty = false;
} else { /* Curve to */
assert(cmd == "C");
d >> c1x >> c1y; /* first control point */
cairo_user_to_device(cr, &c1x, &c1y);
d >> c2x >> c2y; /* second control point */
cairo_user_to_device(cr, &c2x, &c2y);
d >> x >> y; /* end point */
cairo_user_to_device(cr, &x, &y);
assert (!d.fail());
cairo_curve_to(cr, c1x, c1y, c2x, c2y, x, y);
path_is_empty = false;
}
first = false;
}
if (!path_is_empty) {
cairo_close_path(cr);
clipper_add_cairo_path(cr, c, /* closed= */ false);
}
}
void svg_plugin::load_svg_path(cairo_t *cr, const pugi::xml_node &node, ClipperLib::PolyTree &ptree) {
auto *path_data = node.attribute("d").value();
auto fill_rule = clipper_fill_rule(node);
/* For open paths, clipper does not correctly remove self-intersections. Thus, we pass everything into
* clipper twice: Once with all paths set to "closed" to compute fill areas, and once with correct
* open/closed properties for stroke offsetting. */
cairo_set_tolerance (cr, 0.1); /* FIXME make configurable, scale properly for units */
cairo_set_fill_rule(cr, CAIRO_FILL_RULE_WINDING);
ClipperLib::Clipper c;
c.StrictlySimple(true);
path_to_clipper_via_cairo(cr, c, path_data);
/* We canont clip the polygon here since that would produce incorrect results for our stroke. */
c.Execute(ClipperLib::ctUnion, ptree, fill_rule, ClipperLib::pftNonZero);
}
void svg_plugin::parse_dasharray(const pugi::xml_node &node, vector<double> &out) {
out.clear();
string val(node.attribute("stroke-dasharray").value());
if (val.empty() || val == "none")
return;
istringstream desc_stream(val);
while (!desc_stream.eof()) {
/* usvg says the array only contains unitless (px) values. I don't know what resvg does with percentages inside
* dash arrays. We just assume everything is a unitless number here. In case usvg passes through percentages,
* well, bad luck. They are a kind of weird thing inside a dash array in the first place. */
double d;
desc_stream >> d;
out.push_back(d);
}
assert(out.size() % 2 == 0); /* according to resvg spec */
}
/* Take a Clipper path in clipper-scaled document units, and apply the given SVG dash array to it. Do this by walking
* the path from start to end while emitting dashes. */
void svg_plugin::dash_path(const ClipperLib::Path &in, ClipperLib::Paths &out, const vector<double> dasharray, double dash_offset) {
out.clear();
if (dasharray.empty() || in.size() < 2) {
out.push_back(in);
return;
}
size_t dash_idx = 0;
size_t num_dashes = dasharray.size();
while (dash_offset > dasharray[dash_idx]) {
dash_offset -= dasharray[dash_idx];
dash_idx = (dash_idx + 1) % num_dashes;
}
double dash_remaining = dasharray[dash_idx] - dash_offset;
ClipperLib::Path current_dash;
current_dash.push_back(in[0]);
double dbg_total_len = 0.0;
for (size_t i=1; i<in.size(); i++) {
ClipperLib::IntPoint p1(in[i-1]), p2(in[i]);
double x1 = p1.X / clipper_scale, y1 = p1.Y / clipper_scale, x2 = p2.X / clipper_scale, y2 = p2.Y / clipper_scale;
double dist = sqrt(pow(x2-x1, 2) + pow(y2-y1, 2));
dbg_total_len += dist;
if (dist < dash_remaining) {
/* dash extends beyond this segment, append this segment and continue. */
dash_remaining -= dist;
current_dash.push_back(p2);
} else {
/* dash started in some previous segment ends in this segment */
double dash_frac = dash_remaining/dist;
double x = x1 + (x2 - x1) * dash_frac,
y = y1 + (y2 - y1) * dash_frac;
ClipperLib::IntPoint intermediate {(ClipperLib::cInt)round(x * clipper_scale), (ClipperLib::cInt)round(y * clipper_scale)};
/* end this dash */
current_dash.push_back(intermediate);
if (dash_idx%2 == 0) { /* dash */
out.push_back(current_dash);
} /* else space */
dash_idx = (dash_idx + 1) % num_dashes;
double offset = dash_remaining;
/* start next dash */
current_dash.clear();
current_dash.push_back(intermediate);
/* handle case where multiple dashes fit into this segment */
while ((dist - offset) > dasharray[dash_idx]) {
offset += dasharray[dash_idx];
double dash_frac = offset/dist;
double x = x1 + (x2 - x1) * dash_frac,
y = y1 + (y2 - y1) * dash_frac;
ClipperLib::IntPoint intermediate {(ClipperLib::cInt)round(x * clipper_scale), (ClipperLib::cInt)round(y * clipper_scale)};
/* end this dash */
current_dash.push_back(intermediate);
if (dash_idx%2 == 0) { /* dash */
out.push_back(current_dash);
} /* else space */
dash_idx = (dash_idx + 1) % num_dashes;
/* start next dash */
current_dash.clear();
current_dash.push_back(intermediate);
}
dash_remaining = dasharray[dash_idx] - (dist - offset);
current_dash.push_back(p2);
}
}
}
|