1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2021 Jan Sebastian Götte <kicad@jaseg.de>
* Copyright (C) 2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "svg_geom.h"
#include <cmath>
#include <string>
#include <sstream>
#include <assert.h>
#include <cairo.h>
#include "svg_import_defs.h"
using namespace ClipperLib;
using namespace std;
/* Get bounding box of a Clipper Paths */
IntRect svg_plugin::get_paths_bounds(const Paths &paths) {
if (paths.empty()) {
return {0, 0, 0, 0};
}
if (paths[0].empty()) {
return {0, 0, 0, 0};
}
IntPoint p0 = paths[0][0];
cInt x0=p0.X, y0=p0.Y, x1=p0.X, y1=p0.Y;
for (const Path &p : paths) {
for (const IntPoint ip : p) {
if (ip.X < x0)
x0 = ip.X;
if (ip.Y < y0)
y0 = ip.Y;
if (ip.X > x1)
x1 = ip.X;
if (ip.Y > y1)
y1 = ip.Y;
}
}
return {x0, y0, x1, y1};
}
enum ClipperLib::PolyFillType svg_plugin::clipper_fill_rule(const pugi::xml_node &node) {
string val(node.attribute("fill-rule").value());
if (val == "evenodd")
return ClipperLib::pftEvenOdd;
else
return ClipperLib::pftNonZero; /* default */
}
enum ClipperLib::EndType svg_plugin::clipper_end_type(const pugi::xml_node &node) {
string val(node.attribute("stroke-linecap").value());
if (val == "round")
return ClipperLib::etOpenRound;
if (val == "square")
return ClipperLib::etOpenSquare;
return ClipperLib::etOpenButt;
}
enum ClipperLib::JoinType svg_plugin::clipper_join_type(const pugi::xml_node &node) {
string val(node.attribute("stroke-linejoin").value());
if (val == "round")
return ClipperLib::jtRound;
if (val == "bevel")
return ClipperLib::jtSquare;
return ClipperLib::jtMiter;
}
/* Take a Clipper polytree, i.e. a description of a set of polygons, their holes and their inner polygons, and remove
* all holes from it. We remove holes by splitting each polygon that has a hole into two or more pieces so that the hole
* is no more. These pieces perfectly fit each other so there is no visual or functional difference.
*/
void svg_plugin::dehole_polytree(PolyNode &ptree, Paths &out) {
for (int i=0; i<ptree.ChildCount(); i++) {
PolyNode *nod = ptree.Childs[i];
assert(nod);
assert(!nod->IsHole());
/* First, recursively process inner polygons. */
for (int j=0; j<nod->ChildCount(); j++) {
PolyNode *child = nod->Childs[j];
assert(child);
assert(child->IsHole());
if (child->ChildCount() > 0) {
dehole_polytree(*child, out);
}
}
if (nod->ChildCount() == 0) {
out.push_back(nod->Contour);
} else {
/* Do not add children's children, those were handled in the recursive call above */
Clipper c;
c.AddPath(nod->Contour, ptSubject, /* closed= */ true);
for (int k=0; k<nod->ChildCount(); k++) {
c.AddPath(nod->Childs[k]->Contour, ptSubject, /* closed= */ true);
}
/* Find a viable cut: Cut from top-left bounding box corner, through two subsequent points on the hole
* outline and to top-right bbox corner. */
IntRect bbox = c.GetBounds();
Path tri = { { bbox.left, bbox.top }, nod->Childs[0]->Contour[0], nod->Childs[0]->Contour[1], { bbox.right, bbox.top } };
c.AddPath(tri, ptClip, true);
PolyTree solution;
c.StrictlySimple(true);
/* Execute twice, once for intersection fragment and once for difference fragment. Note that this will yield
* at least two, but possibly more polygons. */
c.Execute(ctDifference, solution, pftNonZero);
dehole_polytree(solution, out);
c.Execute(ctIntersection, solution, pftNonZero);
dehole_polytree(solution, out);
}
}
}
/* Intersect two clip paths. Both must share a coordinate system. */
void svg_plugin::combine_clip_paths(Paths &in_a, Paths &in_b, Paths &out) {
Clipper c;
c.StrictlySimple(true);
c.AddPaths(in_a, ptClip, /* closed */ true);
c.AddPaths(in_b, ptSubject, /* closed */ true);
/* Nonzero fill since both input clip paths must already have been preprocessed by clipper. */
c.Execute(ctIntersection, out, pftNonZero);
}
/* Transform given clipper paths under the given cairo transform. If no transform is given, use cairo's current
* user-to-device transform. */
void svg_plugin::transform_paths(cairo_t *cr, Paths &paths, cairo_matrix_t *mat) {
cairo_save(cr);
if (mat != nullptr) {
cairo_set_matrix(cr, mat);
}
for (Path &p : paths) {
transform(p.begin(), p.end(), p.begin(),
[cr](IntPoint p) -> IntPoint {
double x = p.X / clipper_scale, y = p.Y / clipper_scale;
cairo_user_to_device(cr, &x, &y);
return { (cInt)round(x * clipper_scale), (cInt)round(y * clipper_scale) };
});
}
cairo_restore(cr);
}
|