#!/usr/bin/env python3
import re
import textwrap
import ast
import uuid
svg_str = lambda content: content if isinstance(content, str) else '\n'.join(str(c) for c in content)
class Pattern:
def __init__(self, w, h, content):
self.w = w
self.h = h
self.content = content
def svg_def(self, svg_id, off_x, off_y):
return textwrap.dedent(f'''
{svg_str(self.content)}
''')
def make_rect(svg_id, x, y, w, h):
#import random
#c = random.randint(0, 2**24)
#return f''
return f''
class CirclePattern(Pattern):
def __init__(self, d, w, h=None):
self.d = d
self.w = w
self.h = h or w
@property
def content(self):
return f''
make_layer = lambda layer_name, content: \
f'{svg_str(content)}'
svg_template = textwrap.dedent('''
''').strip()
class PatternProtoArea:
def __init__(self, pitch_x, pitch_y=None):
self.pitch_x = pitch_x
self.pitch_y = pitch_y or pitch_x
@property
def pitch(self):
if self.pitch_x != self.pitch_y:
raise ValueError('Pattern has different X and Y pitches')
return self.pitch_x
def fit_rect(self, x, y, w, h, center=True):
w_mod, h_mod = round((w + 5e-7) % self.pitch_x, 6), round((h + 5e-7) % self.pitch_y, 6)
w_fit, h_fit = round(w - w_mod, 6), round(h - h_mod, 6)
if center:
x = x + (w-w_fit)/2
y = y + (h-h_fit)/2
return x, y, w_fit, h_fit
else:
return x, y, w_fit, h_fit
class THTProtoAreaCircles(PatternProtoArea):
def __init__(self, pad_dia=2.0, drill=1.0, pitch=2.54, sides='both', plated=True):
super().__init__(pitch)
self.pad_dia = pad_dia
self.drill = drill
self.drill_pattern = CirclePattern(self.drill, self.pitch)
self.pad_pattern = CirclePattern(self.pad_dia, self.pitch)
self.patterns = [self.drill_pattern, self.pad_pattern]
self.plated = plated
self.sides = sides
def generate(self, x, y, w, h, center=True):
x, y, w, h = self.fit_rect(x, y, w, h, center)
drill = 'plated drill' if self.plated else 'nonplated drill'
pad_id = str(uuid.uuid4())
drill_id = str(uuid.uuid4())
d = { drill: make_rect(drill_id, x, y, w, h),
'defs': [
self.pad_pattern.svg_def(pad_id, x, y),
self.drill_pattern.svg_def(drill_id, x, y)]}
if self.sides in ('top', 'both'):
d['top copper'] = make_rect(pad_id, x, y, w, h)
if self.sides in ('bottom', 'both'):
d['bottom copper'] = make_rect(pad_id, x, y, w, h)
return d
def __repr__(self):
return f'THTCircles(d={self.pad_dia}, h={self.drill}, p={self.pitch}, sides={self.sides}, plated={self.plated})'
LAYERS = [
'top paste',
'top silk',
'top mask',
'top copper',
'bottom copper',
'bottom mask',
'bottom silk',
'bottom paste',
'outline',
'nonplated drill',
'plated drill'
]
class ProtoBoard:
def __init__(self, defs, expr):
self.defs = eval_defs(defs)
self.layout = parse_layout(expr)
def generate(self, w, h):
svg_defs = []
out = {l: [] for l in LAYERS}
for layer_dict in self.layout.generate(0, 0, w, h, self.defs):
for l in LAYERS:
if l in layer_dict:
out[l].append(layer_dict[l])
svg_defs += layer_dict.get('defs', [])
layers = [ make_layer(l, out[l]) for l in LAYERS ]
return svg_template.format(w=w, h=h, defs='\n'.join(svg_defs), layers='\n'.join(layers))
def convert_to_mm(value, unit):
match unit.lower():
case 'mm': return value
case 'cm': return value*10
case 'in': return value*25.4
case 'mil': return value/1000*25.4
raise ValueError(f'Invalid unit {unit}, allowed units are mm, cm, in, and mil.')
value_re = re.compile('([0-9]*\.?[0-9]+)(cm|mm|in|mil|%)')
def eval_value(value, total_length=None):
if not isinstance(value, str):
return None
m = value_re.match(value.lower())
number, unit = m.groups()
if unit == '%':
if total_length is None:
raise ValueError('Percentages are not allowed for this value')
return total_length * float(number) / 100
return convert_to_mm(float(number), unit)
class PropLayout:
def __init__(self, content, direction, proportions):
self.content = content
self.direction = direction
self.proportions = proportions
if len(content) != len(proportions):
raise ValueError('proportions and content must have same length')
def generate(self, x, y, w, h, defs):
for (c_x, c_y, c_w, c_h), child in self.layout_2d(x, y, w, h):
if isinstance(child, str):
yield defs[child].generate(c_x, c_y, c_w, c_h, defs)
else:
yield from child.generate(c_x, c_y, c_w, c_h, defs)
def layout_2d(self, x, y, w, h):
for l, child in zip(self.layout(w if self.direction == 'h' else h), self.content):
this_w, this_h = w, h
this_x, this_y = x, y
if self.direction == 'h':
this_w = l
x += l
else:
this_h = l
y += l
yield (this_x, this_y, this_w, this_h), child
def layout(self, length):
out = [ eval_value(value, length) for value in self.proportions ]
total_length = sum(value for value in out if value is not None)
if length - total_length < -1e-6:
raise ValueError(f'Proportions sum to {total_length} mm, which is greater than the available space of {length} mm.')
leftover = length - total_length
sum_props = sum( (value or 1.0) for value in self.proportions if not isinstance(value, str) )
return [ (leftover * (value or 1.0) / sum_props if not isinstance(value, str) else calculated)
for value, calculated in zip(self.proportions, out) ]
def __str__(self):
children = ', '.join( f'{elem}:{width}' for elem, width in zip(self.content, self.proportions))
return f'PropLayout[{self.direction.upper()}]({children})'
def _map_expression(node):
match node:
case ast.Name():
return node.id
case ast.Constant():
return node.value
case ast.BinOp(op=ast.BitOr()) | ast.BinOp(op=ast.BitAnd()):
left_prop = right_prop = None
left, right = node.left, node.right
if isinstance(left, ast.BinOp) and isinstance(left.op, ast.MatMult):
left_prop = _map_expression(left.right)
left = left.left
if isinstance(right, ast.BinOp) and isinstance(right.op, ast.MatMult):
right_prop = _map_expression(right.right)
right = right.left
direction = 'h' if isinstance(node.op, ast.BitOr) else 'v'
left, right = _map_expression(left), _map_expression(right)
if isinstance(left, PropLayout) and left.direction == direction and left_prop is None:
left.content.append(right)
left.proportions.append(right_prop)
return left
elif isinstance(right, PropLayout) and right.direction == direction and right_prop is None:
right.content.insert(0, left)
right.proportions.insert(0, left_prop)
return right
else:
return PropLayout([left, right], direction, [left_prop, right_prop])
case ast.BinOp(op=ast.MatMult()):
raise SyntaxError(f'Unexpected width specification "{ast.unparse(node.right)}"')
case _:
raise SyntaxError(f'Invalid layout expression "{ast.unparse(node)}"')
def parse_layout(expr):
''' Example layout:
( tht @ 2in | smd ) @ 50% / tht
'''
expr = re.sub(r'\s', '', expr)
expr = re.sub(r'([0-9]*\.?[0-9]+)([Mm][Mm]|[Cc][Mm]|[Ii][Nn]|[Mm][Ii][Ll]|%)', r'"\1\2"', expr)
expr = expr.replace('/', '&')
try:
expr = ast.parse(expr, mode='eval').body
match expr:
case ast.Name():
return PropLayout([expr.id], 'h', [None])
case ast.BinOp(op=ast.MatMult()):
assert isinstance(expr.right, ast.Constant)
return PropLayout([_map_expression(expr.left)], 'h', [expr.right.value])
case _:
return _map_expression(expr)
except SyntaxError as e:
raise SyntaxError('Invalid layout expression') from e
PROTO_AREA_TYPES = {
'THTCircles': THTProtoAreaCircles
}
def eval_defs(defs):
defs = defs.replace('\n', ';')
defs = re.sub(r'\s', '', defs)
out = {}
for elem in defs.split(';'):
if not elem:
continue
if not (m := re.match('([a-zA-Z_][a-zA-Z0-9_]*)=([a-zA-Z_][a-zA-Z0-9_]*)\((.*)\)', elem)):
raise SyntaxError(f'Invalid pattern definition "{elem}"')
key, pattern, params = m.groups()
args, kws = [], {}
for elem in params.split(','):
if not elem:
continue
if (m := re.match('([a-zA-Z_][a-zA-Z0-9_]*)=(.*)', elem)):
param_name, param_value = m.groups()
kws[param_name] = ast.literal_eval(param_value)
else:
args.append(ast.literal_eval(elem))
out[key] = PROTO_AREA_TYPES[pattern](*args, **kws)
return out
if __name__ == '__main__':
# import sys
# print('===== Layout expressions =====')
# for line in [
# 'tht',
# 'tht@1mm',
# 'tht|tht',
# 'tht@1mm|tht',
# 'tht|tht|tht',
# 'tht@1mm|tht@2mm|tht@3mm',
# '(tht@1mm|tht@2mm)|tht@3mm',
# 'tht@1mm|(tht@2mm|tht@3mm)',
# 'tht@2|tht|tht',
# '(tht@1mm|tht|tht@3mm) / tht',
# ]:
# layout = parse_layout(line)
# print(line, '->', layout)
# print(' ', layout.layout(100))
# print()
# print('===== Pattern definitions =====')
# for line in [
# 'tht = THTCircles()',
# 'tht = THTCircles(10)',
# 'tht = THTCircles(10, 20)',
# 'tht = THTCircles(plated=False)',
# 'tht = THTCircles(10, plated=False)',
# ]:
# print(line, '->', eval_defs(line))
# print()
# print('===== Proto board =====')
b = ProtoBoard('tht = THTCircles()', 'tht@1in|(tht@2/tht@1)')
print(b.generate(80, 60))