diff options
Diffstat (limited to 'posts/private-contact-discovery/index.html')
-rw-r--r-- | posts/private-contact-discovery/index.html | 118 |
1 files changed, 0 insertions, 118 deletions
diff --git a/posts/private-contact-discovery/index.html b/posts/private-contact-discovery/index.html deleted file mode 100644 index 9e1dae7..0000000 --- a/posts/private-contact-discovery/index.html +++ /dev/null @@ -1,118 +0,0 @@ -<!DOCTYPE html> -<html lang="en-us"> - <head> - <meta charset="utf-8"> - <meta name="viewport" content="width=device-width, initial-scale=1"> - <title>Private Contact Discovery | blog.jaseg.de</title> - <link rel="stylesheet" href="/css/style.css" /> - <link rel="stylesheet" href="/css/fonts.css" /> - - <header> - <nav> - <ul> - - - <li class="pull-left "> - <a href="https://blog.jaseg.de/">/home/blog.jaseg.de</a> - </li> - - - - - </ul> - </nav> -</header> - - </head> - - <body> - <br/> - -<div class="article-meta"> -<h1><span class="title">Private Contact Discovery</span></h1> - -<h2 class="date">2019/06/22</h2> -<p class="terms"> - - - - - -</p> -</div> - - - -<main> -<div class="document" id="private-contact-discovery"> -<h1 class="title">Private Contact Discovery</h1> - -<p>Private Contact Discovery (PCD) is the formal name for the problem modern smartphone messenger applications have on -installation: Given a user's address book, find out which of their contacts also use the same messenger without the -messenger's servers learning anything about the user's address book. The widespread non-private way to do this is to -simply upload the user's address book to the app's operator's servers and do an SQL JOIN keyed on the phone number field -against the database of registered users. People have tried sprinkling some hashes over these phone numbers in an -attempt to improve privacy, but obviously running a brute-force preimage attack given a domain of maybe a few billion -valid inputs is not cryptographically hard.</p> -<p>Private Contact Discovery can be phrased in terms of Private Set Intersection (PSI), the cryptographic problem of having -two parties holding one set each find the intersection of their sets without disclosing any other information. PSI has -been an active field of research for a while and already yielded useful results for some use cases. Alas, none of those -results were truly practical yet for usage in PCD in a typical messenger application. They would require too much CPU -time or too much data to be transferred.</p> -<p>At USENIX Security 2019, Researchers from technical universities Graz and Darmstadt published a paper titled <em>Private -Contact Discovery at Scale</em> -(<a class="reference external" href="https://eprint.iacr.org/2019/517">eprint</a> | <a class="reference external" href="https://eprint.iacr.org/2019/517.pdf">PDF</a>). -In this paper, they basically optimize the hell out of existing cryptographic solutions to private contact discovery, -jumping from a still-impractical state of the art right to practicality. Their scheme allows a client with 1k contacts -to run PCD against a server with 1B contacts in about 3s on a phone. The main disadvantage of their scheme is that it -requires the client to in advance download a compressed database of all users, that clocks in at about 1GB for 1B users.</p> -<p>I found this paper very interesting for its immediate practical applicability. As an excuse to dig into the topic some -more, I gave a short presentation at my university lab's research seminar on this paper -(slides: <a class="reference external" href="mori_semi_psi_talk.pdf">PDF</a> | <a class="reference external" href="mori_semi_psi_talk.odp">ODP</a>).</p> -<p>Even if you're not working on secure communication systems on a day-to-day basis this paper might interest you. If -you're working with social account information of any kind I can highly recommend giving it a look. Not only might your -users benefit from improved privacy, but your company might be able to avoid a bunch of data protection and -accountability issues by simply not producing as much sensitive data in the first place.</p> -</div> -</main> - - <footer> - -<script> -(function() { - function center_el(tagName) { - var tags = document.getElementsByTagName(tagName), i, tag; - for (i = 0; i < tags.length; i++) { - tag = tags[i]; - var parent = tag.parentElement; - - if (parent.childNodes.length === 1) { - - if (parent.nodeName === 'A') { - parent = parent.parentElement; - if (parent.childNodes.length != 1) continue; - } - if (parent.nodeName === 'P') parent.style.textAlign = 'center'; - } - } - } - var tagNames = ['img', 'embed', 'object']; - for (var i = 0; i < tagNames.length; i++) { - center_el(tagNames[i]); - } -})(); -</script> - - - <div id="license-info"> - ©2020 by Jan Götte. This work is licensed under - <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">CC-BY-NC-SA 4.0</a>. - </div> - <div id="imprint-info"> - <a href="/imprint">Impressum und Haftungsausschluss und Datenschutzerklärung</a>.<br/> - <a href="/about">About this blog</a>. - </div> - </footer> - </body> -</html> - |