1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
/* Megumin LED display firmware
* Copyright (C) 2018 Sebastian Götte <code@jaseg.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "adc.h"
#include <stdbool.h>
#include <stdlib.h>
volatile uint16_t adc_buf[ADC_BUFSIZE];
volatile struct adc_state adc_state = {0};
#define st adc_state
volatile struct adc_measurements adc_data;
static void adc_dma_init(int burstlen, bool enable_interrupt);
static void adc_timer_init(int psc, int ivl);
void adc_configure_scope_mode(uint8_t channel_mask, int sampling_interval_ns) {
/* The constant SAMPLE_FAST (0) when passed in as sampling_interval_ns is handled specially in that we turn the ADC
to continuous mode to get the highest possible sampling rate. */
/* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */
TIM1->CR1 &= ~TIM_CR1_CEN;
ADC1->CR &= ~ADC_CR_ADSTART;
DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* Enable channel */
/* keep track of current mode in global variable */
st.adc_mode = ADC_SCOPE;
adc_dma_init(sizeof(adc_buf)/sizeof(adc_buf[0]), false);
/* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */
ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */
/* Sampling time 13.5 ADC clock cycles -> total conversion time 2.17us*/
ADC1->SMPR = (2<<ADC_SMPR_SMP_Pos);
/* Setup DMA and triggering */
if (sampling_interval_ns == SAMPLE_FAST) /* Continuous trigger */
ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_CONT;
else /* Trigger from timer 1 Channel 4 */
ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos);
ADC1->CHSELR = channel_mask;
/* Perform self-calibration */
ADC1->CR |= ADC_CR_ADCAL;
while (ADC1->CR & ADC_CR_ADCAL)
/* Enable conversion */
ADC1->CR |= ADC_CR_ADSTART;
if (sampling_interval_ns == SAMPLE_FAST)
return; /* We don't need the timer to trigger in continuous mode. */
/* An ADC conversion takes 1.1667us, so to be sure we don't get data overruns we limit sampling to every 1.5us.
Since we don't have a spare PLL to generate the ADC sample clock and re-configuring the system clock just for this
would be overkill we round to 250ns increments. The minimum sampling rate is about 60Hz due to timer resolution. */
int cycles = sampling_interval_ns > 1500 ? sampling_interval_ns/250 : 6;
if (cycles > 0xffff)
cycles = 0xffff;
adc_timer_init(12/*250ns/tick*/, cycles);
}
void adc_configure_monitor_mode(int oversampling, int ivl_us, int mean_aggregate_len) {
/* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */
TIM1->CR1 &= ~TIM_CR1_CEN;
ADC1->CR &= ~ADC_CR_ADSTART;
DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* Enable channel */
/* keep track of current mode in global variable */
st.adc_mode = ADC_MONITOR;
st.adc_oversampling = oversampling;
st.ovs_count = 0;
for (int i=0; i<NCH; i++)
st.adc_aggregate[i] = 0;
st.mean_aggregator[0] = st.mean_aggregator[1] = st.mean_aggregator[2] = 0;
st.mean_aggregate_ctr = 0;
adc_dma_init(NCH, true);
/* Setup DMA and triggering: Trigger from Timer 1 Channel 4 */
ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos);
/* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */
ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */
/* Sampling time 13.5 ADC clock cycles -> total conversion time 2.17us*/
ADC1->SMPR = (2<<ADC_SMPR_SMP_Pos);
/* Internal VCC and temperature sensor channels */
ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17;
/* Enable internal voltage reference and temperature sensor */
ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN;
/* Perform ADC calibration */
ADC1->CR |= ADC_CR_ADCAL;
while (ADC1->CR & ADC_CR_ADCAL)
;
/* Enable ADC */
ADC1->CR |= ADC_CR_ADEN;
ADC1->CR |= ADC_CR_ADSTART;
adc_timer_init(SystemCoreClock/1000000/*1.0us/tick*/, ivl_us);
}
static void adc_dma_init(int burstlen, bool enable_interrupt) {
/* Configure DMA 1 Channel 1 to get rid of all the data */
DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR;
DMA1_Channel1->CMAR = (unsigned int)&adc_buf;
DMA1_Channel1->CNDTR = burstlen;
DMA1_Channel1->CCR = (0<<DMA_CCR_PL_Pos);
DMA1_Channel1->CCR |=
DMA_CCR_CIRC /* circular mode so we can leave it running indefinitely */
| (1<<DMA_CCR_MSIZE_Pos) /* 16 bit */
| (1<<DMA_CCR_PSIZE_Pos) /* 16 bit */
| DMA_CCR_MINC
| (enable_interrupt ? DMA_CCR_TCIE : 0); /* Enable transfer complete interrupt. */
if (enable_interrupt) {
/* triggered on transfer completion. We use this to process the ADC data */
NVIC_EnableIRQ(DMA1_Channel1_IRQn);
NVIC_SetPriority(DMA1_Channel1_IRQn, 3<<5);
} else {
NVIC_DisableIRQ(DMA1_Channel1_IRQn);
DMA1->IFCR |= DMA_IFCR_CGIF1;
}
DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */
}
static void adc_timer_init(int psc, int ivl) {
TIM1->BDTR = TIM_BDTR_MOE; /* MOE is needed even though we only "output" a chip-internal signal TODO: Verify this. */
TIM1->CCMR2 = (6<<TIM_CCMR2_OC4M_Pos); /* PWM Mode 1 to get a clean trigger signal */
TIM1->CCER = TIM_CCER_CC4E; /* Enable capture/compare unit 4 connected to ADC */
TIM1->CCR4 = 1; /* Trigger at start of timer cycle */
/* Set prescaler and interval */
TIM1->PSC = psc-1;
TIM1->ARR = ivl-1;
/* Preload all values */
TIM1->EGR |= TIM_EGR_UG;
TIM1->CR1 = TIM_CR1_ARPE;
/* And... go! */
TIM1->CR1 |= TIM_CR1_CEN;
}
void DMA1_Channel1_IRQHandler(void) {
/* Clear the interrupt flag */
DMA1->IFCR |= DMA_IFCR_CGIF1;
for (int i=0; i<NCH; i++)
st.adc_aggregate[i] += adc_buf[i];
if (++st.ovs_count == (1<<st.adc_oversampling)) {
for (int i=0; i<NCH; i++)
st.adc_aggregate[i] >>= st.adc_oversampling;
/* This has been copied from the code examples to section 12.9 ADC>"Temperature sensor and internal reference
* voltage" in the reference manual with the extension that we actually measure the supply voltage instead of
* hardcoding it. This is not strictly necessary since we're running off a bored little LDO but it's free and
* the current supply voltage is a nice health value.
*/
adc_data.adc_vcc_mv = (3300 * VREFINT_CAL)/(st.adc_aggregate[VREF_CH]);
int64_t read = st.adc_aggregate[TEMP_CH] * 10 * 10000;
int64_t vcc = adc_data.adc_vcc_mv;
int64_t cal = TS_CAL1 * 10 * 10000;
adc_data.adc_temp_celsius_tenths = 300 + ((read/4096 * vcc) - (cal/4096 * 3300))/43000;
const long vmeas_r_total = VMEAS_R_HIGH + VMEAS_R_LOW;
int a = adc_data.adc_vmeas_a_mv = (st.adc_aggregate[VMEAS_A]*vmeas_r_total)/4096 * vcc / VMEAS_R_LOW;
int b = adc_data.adc_vmeas_b_mv = (st.adc_aggregate[VMEAS_B]*vmeas_r_total)/4096 * vcc / VMEAS_R_LOW;
st.mean_aggregator[0] += a;
st.mean_aggregator[1] += b;
st.mean_aggregator[2] += abs(b-a);
if (++st.mean_aggregate_ctr == st.mean_aggregate_len) {
adc_data.adc_mean_a_mv = st.mean_aggregator[0] / st.mean_aggregate_len;
adc_data.adc_mean_b_mv = st.mean_aggregator[1] / st.mean_aggregate_len;
adc_data.adc_mean_diff_mv = st.mean_aggregator[2] / st.mean_aggregate_len;
st.mean_aggregate_ctr = 0;
st.mean_aggregator[0] = st.mean_aggregator[1] = st.mean_aggregator[2] = 0;
}
st.ovs_count = 0;
for (int i=0; i<NCH; i++)
st.adc_aggregate[i] = 0;
}
}
|