blob: 726e9a8f66ed23721bd8216acd3bc307106695c9 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
/* Megumin LED display firmware
* Copyright (C) 2018 Sebastian Götte <code@jaseg.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "adc.h"
volatile struct adc_measurements adc_data = {0};
enum adc_channels {
VREF_CH,
VMEAS_A,
VMEAS_B,
TEMP_CH,
NCH
};
static volatile uint16_t adc_buf[NCH];
void adc_init(void) {
/* The ADC is used for temperature measurement. To compute the temperature from an ADC reading of the internal
* temperature sensor, the supply voltage must also be measured. Thus we are using two channels.
*
* The ADC is triggered by compare channel 4 of timer 1. The trigger is set to falling edge to trigger on compare
* match, not overflow.
*/
ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos);
/* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */
ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */
/* Sampling time 13.5 ADC clock cycles -> total conversion time 2.17us*/
ADC1->SMPR = (2<<ADC_SMPR_SMP_Pos);
/* Internal VCC and temperature sensor channels */
ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17;
/* Enable internal voltage reference and temperature sensor */
ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN;
/* Perform ADC calibration */
ADC1->CR |= ADC_CR_ADCAL;
while (ADC1->CR & ADC_CR_ADCAL)
;
/* Enable ADC */
ADC1->CR |= ADC_CR_ADEN;
ADC1->CR |= ADC_CR_ADSTART;
/* Configure DMA 1 Channel 1 to get rid of all the data */
DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR;
DMA1_Channel1->CMAR = (unsigned int)&adc_buf;
DMA1_Channel1->CNDTR = NCH;
DMA1_Channel1->CCR = (0<<DMA_CCR_PL_Pos);
DMA1_Channel1->CCR |=
DMA_CCR_CIRC /* circular mode so we can leave it running indefinitely */
| (1<<DMA_CCR_MSIZE_Pos) /* 16 bit */
| (1<<DMA_CCR_PSIZE_Pos) /* 16 bit */
| DMA_CCR_MINC
| DMA_CCR_TCIE; /* Enable transfer complete interrupt. */
DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */
/* triggered on transfer completion. We use this to process the ADC data */
NVIC_EnableIRQ(DMA1_Channel1_IRQn);
NVIC_SetPriority(DMA1_Channel1_IRQn, 3<<5);
}
uint16_t buf_a[256];
uint16_t buf_b[256];
int bufp = 0;
void DMA1_Channel1_IRQHandler(void) {
/* This interrupt takes either 1.2us or 13us. It can be pre-empted by the more timing-critical UART and LED timer
* interrupts. */
static int count = 0; /* oversampling accumulator sample count */
static uint32_t adc_aggregate[NCH] = {0}; /* oversampling accumulator */
/* Clear the interrupt flag */
DMA1->IFCR |= DMA_IFCR_CGIF1;
for (int i=0; i<NCH; i++)
adc_aggregate[i] += adc_buf[i];
if (++count == (1<<ADC_OVERSAMPLING)) {
for (int i=0; i<NCH; i++)
adc_aggregate[i] >>= ADC_OVERSAMPLING;
/* This has been copied from the code examples to section 12.9 ADC>"Temperature sensor and internal reference
* voltage" in the reference manual with the extension that we actually measure the supply voltage instead of
* hardcoding it. This is not strictly necessary since we're running off a bored little LDO but it's free and
* the current supply voltage is a nice health value.
*/
adc_data.adc_vcc_mv = (3300 * VREFINT_CAL)/(adc_aggregate[VREF_CH]);
int64_t read = adc_aggregate[TEMP_CH] * 10 * 10000;
int64_t vcc = adc_data.adc_vcc_mv;
int64_t cal = TS_CAL1 * 10 * 10000;
adc_data.adc_temp_celsius_tenths = 300 + ((read/4096 * vcc) - (cal/4096 * 3300))/43000;
adc_data.adc_vmeas_a_mv = (adc_aggregate[VMEAS_A]*13300L)/4096 * vcc / 3300;
adc_data.adc_vmeas_b_mv = (adc_aggregate[VMEAS_B]*13300L)/4096 * vcc / 3300;
buf_a[bufp] = adc_data.adc_vmeas_a_mv;
buf_b[bufp] = adc_data.adc_vmeas_b_mv;
if (++bufp >= sizeof(buf_a)/sizeof(buf_a[0])) {
bufp = 0;
}
count = 0;
for (int i=0; i<NCH; i++)
adc_aggregate[i] = 0;
}
}
|