1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/* 8seg LED display driver firmware
* Copyright (C) 2018 Sebastian Götte <code@jaseg.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "global.h"
#include "serial.h"
#include "i2c.h"
#include "lcd1602.h"
#include "mcp9801.h"
#include "ina226.h"
#include "mini-printf.h"
#include <8b10b.h>
/* Part number: STM32F030F4C6 */
volatile unsigned int comm_led_ctr, err_led_ctr;
volatile unsigned int sys_time_tick = 0;
volatile unsigned int sys_time_ms;
volatile unsigned int sys_time_s;
volatile unsigned int sys_flag_1Hz;
unsigned int frame_duration_us;
volatile uint8_t global_brightness; /* FIXME implement sending */
void trigger_error_led() {
err_led_ctr = STATUS_LED_DURATION_MS/TICK_MS;
}
void trigger_comm_led() {
comm_led_ctr = STATUS_LED_DURATION_MS/TICK_MS;
}
static volatile struct {
int current_symbol;
struct state_8b10b_enc st;
} txstate;
#define NO_SYMBOL (DECODER_RETURN_CODE_LAST + 1)
uint8_t random() {
static uint8_t x, a, b, c;
x++; //x is incremented every round and is not affected by any other variable
a = (a ^ c ^ x); //note the mix of addition and XOR
b = (b + a); //And the use of very few instructions
c = ((c + ((b >> 1) ^ a))); // the AES S-Box Operation ensures an even distributon of entropy
return c;
}
enum STATUS_LEDS {
STATUS_LED_COMMUNICATION = 1,
STATUS_LED_ERROR = 2,
STATUS_LED_LOAD = 4,
STATUS_LED_OPERATION = 8,
STATUS_LED_J5_GREEN = 16,
STATUS_LED_J5_YELLOW = 32,
STATUS_LED_J4_GREEN = 64,
STATUS_LED_J4_YELLOW = 128
};
static void set_status_leds(uint8_t val) {
/* Reset strobe. Will be set in systick handler */
GPIOA->BRR = 1<<4;
//for (int i=0; i<100; i++)
// asm volatile ("nop");
/* Workaround for *nasty* hardware behavior: If SPI data width is configured as 8 bit but DR is written as 16
* bit, SPI actually sends 16 clock cycles. Thus, we have to make sure the compiler emits a 8-bit write here.
* Thanks, TI! */
*((volatile uint8_t *)&(SPI1->DR)) = val ^ 0x0f; /* Invert LEDs connected to VCC instead of GND */
}
int main(void) {
/* Startup code */
RCC->CR |= RCC_CR_HSEON;
while (!(RCC->CR&RCC_CR_HSERDY));
RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk;
RCC->CFGR |= ((6-2)<<RCC_CFGR_PLLMUL_Pos) | RCC_CFGR_PLLSRC_HSE_PREDIV; /* PLL x6 -> 48.0MHz */
RCC->CR |= RCC_CR_PLLON;
while (!(RCC->CR&RCC_CR_PLLRDY));
RCC->CFGR |= (2<<RCC_CFGR_SW_Pos);
RCC->AHBENR |= RCC_AHBENR_DMAEN | RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_FLITFEN;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN | RCC_APB1ENR_PWREN | RCC_APB1ENR_I2C1EN;
RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN | RCC_APB2ENR_ADCEN| RCC_APB2ENR_DBGMCUEN | RCC_APB2ENR_USART1EN | RCC_APB2ENR_SPI1EN;
SystemCoreClockUpdate();
SysTick_Config(SystemCoreClock/(1000/TICK_MS)); /* 10ms interval */
NVIC_EnableIRQ(SysTick_IRQn);
NVIC_SetPriority(SysTick_IRQn, 3<<5);
/* GPIO setup */
GPIOA->MODER |=
(3<<GPIO_MODER_MODER0_Pos) /* PA0 - Vboot to ADC */
| (2<<GPIO_MODER_MODER1_Pos) /* PA1 - RS485 DE */
| (2<<GPIO_MODER_MODER2_Pos) /* PA2 - RS485 TX */
| (2<<GPIO_MODER_MODER3_Pos) /* PA3 - RS485 RX */
| (1<<GPIO_MODER_MODER4_Pos) /* PA4 - Strobe/Vin to ADC. CAUTION: This pin is dual-use */
| (2<<GPIO_MODER_MODER5_Pos) /* PA5 - SCK */
| (2<<GPIO_MODER_MODER6_Pos) /* PA6 - CTRL_A to TIM 3 ch 1 */
| (2<<GPIO_MODER_MODER7_Pos) /* PA7 - MOSI */
| (2<<GPIO_MODER_MODER9_Pos) /* PA9 - SCL */
| (2<<GPIO_MODER_MODER10_Pos);/* PA10 - SDA */
GPIOA->AFR[0] =
(1<<GPIO_AFRL_AFSEL1_Pos) /* PA1 */
| (1<<GPIO_AFRL_AFSEL2_Pos) /* PA2 */
| (1<<GPIO_AFRL_AFSEL3_Pos) /* PA3 */
| (1<<GPIO_AFRL_AFSEL6_Pos); /* PA6 */
GPIOA->AFR[1] =
(4<<GPIO_AFRH_AFSEL9_Pos) /* PA9 */
| (4<<GPIO_AFRH_AFSEL10_Pos);/* PA10 */
GPIOA->ODR = 0; /* Set PA4 ODR to 0 */
GPIOA->OTYPER |=
GPIO_OTYPER_OT_1
| GPIO_OTYPER_OT_2;
// FIXME lag 37.3us @ 720 Ohm / 16.0us @ 360 Ohm / 2.8us @ 88 Ohm
GPIOA->OSPEEDR |=
(3<<GPIO_OSPEEDR_OSPEEDR1_Pos)
| (3<<GPIO_OSPEEDR_OSPEEDR2_Pos);
/* Note: since we have quite a bunch of pin constraints we can't actually use complementary outputs for the
* complementary MOSFET driver control signals (CTRL_A & CTRL_B). Instead, we use two totally separate output
* channels (1 & 4) and emulate the dead-time generator in software. */
GPIOB->MODER |=
(2<<GPIO_MODER_MODER1_Pos); /* PB1 - CTRL_B to TIM 3 ch 4 */
GPIOB->AFR[0] = (1<<GPIO_AFRL_AFSEL1_Pos); /* PB1 */
serial_init();
/* FIXME ADC config */
/* SPI config. SPI1 is used to control the shift register controlling the eight status LEDs. */
SPI1->CR2 = (7<<SPI_CR2_DS_Pos);
/* Baud rate PCLK/128 -> 375.0kHz */
SPI1->CR1 =
SPI_CR1_SSM
| SPI_CR1_SSI
| (6<<SPI_CR1_BR_Pos)
| SPI_CR1_MSTR;
SPI1->CR1 |= SPI_CR1_SPE;
/* I2C for LCD, temp sensor, current sensor */
i2c_config_filters(I2C1, I2C_AF_ENABLE, 0);
i2c_config_timing(I2C1, 0x2000090e); /* Magic value for 100kHz I2C @ 48MHz CLK. Fell out of STMCubeMX. I love
downloading 120MB of software to download another 100MB of software, only
this time over unsecured HTTP, to generate 3.5 bytes of configuration values
using a Java(TM) GUI. */
i2c_enable(I2C1);
lcd1602_init();
ina226_init();
mcp9801_init();
/* The MCP9801 temperature sensor is initialized below in the SysTick ISR since it needs a few milliseconds to
* powerup. */
/* TIM3 is used to generate the MOSFET driver control signals */
/* TIM3 running off 48MHz APB1 clk, T=20.833ns */
TIM3->CR1 = 0; /* Disable ARR preload (double-buffering) */
TIM3->PSC = 48-1; /* Prescaler 48 -> f=1MHz/T=1us */
TIM3->DIER = TIM_DIER_UIE; /* Enable update (overflow) interrupt */
TIM3->CCMR1 = 6<<TIM_CCMR1_OC1M_Pos | TIM_CCMR1_OC1PE; /* Configure output compare unit 1 to PWM mode 1, enable CCR1 preload */
TIM3->CCMR2 = 6<<TIM_CCMR2_OC4M_Pos | TIM_CCMR2_OC4PE; /* Configure output compare unit 4 to PWM mode 1, enable CCR4 preload */
TIM3->CCER = TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC4E | TIM_CCER_CC4P; /* Confiugre CH1 to complementary outputs */
TIM3->BDTR = TIM_BDTR_MOE; /* Enable MOE on next update event, i.e. on initial timer load. */
TIM3->CR1 |= TIM_CR1_CEN;
TIM3->ARR = 800-1; /* Set f=2.5kHz/T=0.4ms */
xfr_8b10b_encode_reset(&txstate.st);
txstate.current_symbol = xfr_8b10b_encode(&txstate.st, K28_1) | 1<<10;
TIM3->EGR |= TIM_EGR_UG;
lcd_write_str(0, 0, "8seg driver");
lcd_write_str(0, 1, "initialized \xbc");
NVIC_EnableIRQ(TIM3_IRQn);
NVIC_SetPriority(TIM3_IRQn, 2<<4);
while (42) {
if (sys_flag_1Hz) {
sys_flag_1Hz = 0;
char buf[17];
int temp = mcp9801_read_mdegC();
int deg = temp/1000;
int frac = (temp%1000)/100;
mini_snprintf(buf, sizeof(buf), "Temp: %d.%01d\xdf""C" LCD_FILL, deg, frac);
lcd_write_str(0, 0, buf);
mini_snprintf(buf, sizeof(buf), "I=%dmA U=%dmV" LCD_FILL, ina226_read_i()*INA226_I_LSB_uA/1000, ina226_read_v()*INA226_VB_LSB_uV/1000);
lcd_write_str(0, 1, buf);
}
}
}
static int flipbits10(int in) {
return
(in&0x200)>>9 |
(in&0x100)>>7 |
(in&0x080)>>5 |
(in&0x040)>>3 |
(in&0x020)>>1 |
(in&0x010)<<1 |
(in&0x008)<<3 |
(in&0x004)<<5 |
(in&0x002)<<7 |
(in&0x001)<<9;
}
void TIM3_IRQHandler() {
static int txpos = -1;
static unsigned int tx_start_tick = 0;
static uint8_t txbuf[3] = {0x01, 0x05, 0x01};
TIM3->SR &= ~TIM_SR_UIF;
int sym = txstate.current_symbol;
int bit = sym&1;
sym >>= 1;
if (sym == 1) { /* last bit shifted out */
if (txpos == -1)
sym = xfr_8b10b_encode(&txstate.st, -K28_1);
else
sym = xfr_8b10b_encode(&txstate.st, txbuf[txpos]);
txpos++;
if (txpos >= sizeof(txbuf)/sizeof(txbuf[0])) {
frame_duration_us = (sys_time_tick - tx_start_tick) * 10 * 1000;
tx_start_tick = sys_time_tick;
txpos = -1;
}
sym = flipbits10(sym) | 1<<10;
}
txstate.current_symbol = sym;
#define DEAD_TIME 100
TIM3->CCR1 = bit ? 0xffff : DEAD_TIME;
TIM3->CCR4 = bit ? DEAD_TIME : 0xffff;
}
void NMI_Handler(void) {
}
void HardFault_Handler(void) __attribute__((naked));
void HardFault_Handler() {
asm volatile ("bkpt");
}
void SVC_Handler(void) {
}
void PendSV_Handler(void) {
}
void SysTick_Handler(void) {
sys_time_tick++;
sys_time_ms += TICK_MS;
if (sys_time_ms++ == 1000) {
sys_time_ms = 0;
sys_time_s++;
sys_flag_1Hz = 1;
}
/* This is a hack. We could use the SPI interrupt here if that didn't fire at the start instead of end of transmission.... -.- */
if (sys_time_tick&1) {
uint8_t val = (sys_time_ms >= 500) ? STATUS_LED_OPERATION : 0;
if (comm_led_ctr) {
comm_led_ctr--;
val |= STATUS_LED_COMMUNICATION;
}
if (err_led_ctr) {
err_led_ctr--;
val |= STATUS_LED_ERROR;
}
set_status_leds(val);
} else {
GPIOA->BSRR = 1<<4;
}
}
void _init(void) {
}
void BusFault_Handler(void) __attribute__((naked));
void BusFault_Handler() {
asm volatile ("bkpt");
}
|