aboutsummaryrefslogtreecommitdiff
path: root/driver_fw/i2c.c
blob: bab1a16d2261e581070101f3f30875319c3416c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Inter-integrated circuit (I2C) management


#include "i2c.h"


// I2C timeout, about 2ms
#define I2C_TIMEOUT             200U

// Maximum NBYTES value
#define I2C_NBYTES_MAX          255U


// Count rough delay for timeouts
static uint32_t i2c_calc_delay(uint32_t delay) {
	uint32_t cnt;

	if (SystemCoreClock > 1000000U) {
		cnt = (delay * ((SystemCoreClock / 1000000U) + 1U));
	} else {
		cnt = (((delay / 100U) + 1U) * ((SystemCoreClock / 10000U) + 1U));
	}

	return cnt;
}

// Check if target device is ready for communication
// input:
//   I2Cx - pointer to the I2C peripheral (I2C1, etc.)
//   devAddr - target device address
//   trials - number of trials (must not be zero)
// return:
//   I2C_ERROR if there was a timeout during I2C operations, I2C_SUCCESS otherwise
I2CSTATUS i2c_is_device_ready(I2C_TypeDef* I2Cx, uint8_t devAddr, uint32_t trials) {
	volatile uint32_t wait;
	uint32_t delay_val = i2c_calc_delay(I2C_TIMEOUT);
	uint32_t reg;

	while (trials--) {
		// Clear all flags
		I2Cx->ICR = I2C_ICR_ALL;

		// Generate START
		i2c_genstart(I2Cx, devAddr);

		// Wait for STOP, NACK or BERR
		wait = delay_val;
		while (!((reg = I2Cx->ISR) & (I2C_ISR_STOPF | I2C_ISR_NACKF | I2C_ISR_BERR)) && --wait);
		if (wait == 0) { return I2C_ERROR; }

		// Wait while STOP flag is reset
		wait = delay_val;
		while (!(I2Cx->ISR & I2C_ISR_STOPF) && --wait);
		if (wait == 0) { return I2C_ERROR; }

		// Clear the NACK, STOP and BERR flags
		I2Cx->ICR = I2C_ICR_STOPCF | I2C_ICR_NACKCF | I2C_ICR_BERRCF;

		// Check for BERR flag
		if (reg & I2C_ISR_BERR) {
			// Misplaced START/STOP? Perform a software reset of I2C
			i2c_disable(I2Cx);
			i2c_enable(I2Cx);
		} else {
			// Device responded if NACK flag is not set
			if (!(reg & I2C_ISR_NACKF)) { return I2C_SUCCESS; }
		}
	}

	return I2C_ERROR;
}

// Transmit an amount of data in master mode
// input:
//   I2Cx - pointer to the I2C peripheral (I2C1, etc.)
//   pBbuf - pointer to the data buffer
//   nbytes - number of bytes to transmit
//   devAddr - address of target device
//   flags - options for transmission, combination of I2C_TX_xx values:
//     I2C_TX_NOSTART - don't generate START condition
//     I2C_TX_NOSTOP - don't generate STOP condition
//     I2C_TX_CONT - this flag indicates that transmission will be continued
//                   e.g. by calling this function again with NOSTART flag
//     zero value - generate both START and STOP conditions
// return:
//   I2C_ERROR if there was a timeout during I2C operations, I2C_SUCCESS otherwise
I2CSTATUS i2c_transmit(I2C_TypeDef* I2Cx, const uint8_t *pBuf, uint32_t nbytes, uint8_t devAddr, uint32_t flags) {
	uint32_t reg;
	uint32_t tx_count;
	uint32_t delay_val = i2c_calc_delay(I2C_TIMEOUT);
	volatile uint32_t wait;

	// Clear all flags
	I2Cx->ICR = I2C_ICR_ALL;

	// Everything regarding to the transmission is in the CR2 register
	reg = I2Cx->CR2;
	reg &= ~I2C_CR2_ALL;

	// Slave device address
	reg |= (devAddr & I2C_CR2_SADD);

	// Whether it need to generate START condition
	if (!(flags & I2C_TX_NOSTART)) { reg |= I2C_CR2_START; }

	// Whether it need to generate STOP condition
	if ((flags & I2C_TX_CONT) || (nbytes > I2C_NBYTES_MAX)) {
		reg |= I2C_CR2_RELOAD;
	} else {
		if (!(flags & I2C_TX_NOSTOP)) { reg |= I2C_CR2_AUTOEND; }
	}

	// Transfer length
	tx_count = (nbytes > I2C_NBYTES_MAX) ? I2C_NBYTES_MAX : nbytes;
	nbytes -= tx_count;
	reg |= tx_count << I2C_CR2_NBYTES_Pos;

	// Write a composed value to the I2C register
	I2Cx->CR2 = reg;

	// Transmit data
	while (tx_count) {
		// Wait until either TXIS or NACK flag is set
		wait = delay_val;
		while (!((reg = I2Cx->ISR) & (I2C_ISR_TXIS | I2C_ISR_NACKF)) && --wait);
		if ((reg & I2C_ISR_NACKF) || (wait == 0))  { return I2C_ERROR; }

		// Transmit byte
		I2Cx->TXDR = *pBuf++;
		tx_count--;

		if ((tx_count == 0) && (nbytes != 0)) {
			// Wait until TCR flag is set (Transfer Complete Reload)
			wait = delay_val;
			while (!(I2Cx->ISR & I2C_ISR_TCR) && --wait);
			if (wait == 0) { return I2C_ERROR; }

			// Configure next (or last) portion transfer
			reg = I2Cx->CR2;
			reg &= ~(I2C_CR2_NBYTES | I2C_CR2_RELOAD | I2C_CR2_AUTOEND);
			if ((flags & I2C_TX_CONT) || (nbytes > I2C_NBYTES_MAX)) {
				reg |= I2C_CR2_RELOAD;
			} else {
				if (!(flags & I2C_TX_NOSTOP)) { reg |= I2C_CR2_AUTOEND; }
			}
			tx_count = (nbytes > I2C_NBYTES_MAX) ? I2C_NBYTES_MAX : nbytes;
			nbytes -= tx_count;
			reg |= tx_count << I2C_CR2_NBYTES_Pos;
			I2Cx->CR2 = reg;
		}
	}

	// End of transmission
	wait = delay_val;
	while (!(I2Cx->ISR & (I2C_ISR_TC | I2C_ISR_TCR | I2C_ISR_STOPF)) && --wait);

	return (wait) ? I2C_SUCCESS : I2C_ERROR;
}

// Receive an amount of data in master mode
// input:
//   I2Cx - pointer to the I2C peripheral (I2C1, etc.)
//   buf - pointer to the data buffer
//   nbytes - number of bytes to receive
//   devAddr - address of target device
// return:
//   I2C_ERROR if there was a timeout during I2C operations, I2C_SUCCESS otherwise
I2CSTATUS i2c_receive(I2C_TypeDef* I2Cx, uint8_t *pBuf, uint32_t nbytes, uint8_t devAddr) {
	uint32_t reg;
	uint32_t rx_count;
	uint32_t delay_val = i2c_calc_delay(I2C_TIMEOUT);
	volatile uint32_t wait;

	// Clear all flags
	I2Cx->ICR = I2C_ICR_ALL;

	// Everything regarding to the transmission is in the CR2 register
	reg = I2Cx->CR2;
	reg &= ~I2C_CR2_ALL;

	// Configure slave device address, enable START condition and set direction to READ
	reg |= (devAddr & I2C_CR2_SADD) | I2C_CR2_START | I2C_CR2_RD_WRN;

	// Transfer length
	if (nbytes > I2C_NBYTES_MAX) {
		rx_count = I2C_NBYTES_MAX;
		reg |= I2C_CR2_RELOAD;
	} else {
		rx_count = nbytes;
		reg |= I2C_CR2_AUTOEND;
	}
	reg |= rx_count << I2C_CR2_NBYTES_Pos;
	nbytes -= rx_count;

	// Write a composed value to the I2C register
	I2Cx->CR2 = reg;

	// Receive data
	while (rx_count) {
		// Wait until either RXNE or NACK flag is set
		wait = delay_val;
		while (!((reg = I2Cx->ISR) & (I2C_ISR_RXNE | I2C_ISR_NACKF)) && --wait);
		if ((reg & I2C_ISR_NACKF) || (wait == 0)) { return I2C_ERROR; }

		// Read received data
		*pBuf++ = I2Cx->RXDR;
		rx_count--;

		if ((rx_count == 0) && (nbytes != 0)) {
			// Wait until TCR flag is set (Transfer Complete Reload)
			wait = delay_val;
			while (!(I2Cx->ISR & I2C_ISR_TCR) && --wait);
			if (wait == 0) { return I2C_ERROR; }

			// Configure next (or last) portion transfer
			reg = I2Cx->CR2;
			reg &= ~(I2C_CR2_NBYTES | I2C_CR2_AUTOEND | I2C_CR2_RELOAD);
			if (nbytes > I2C_NBYTES_MAX) {
				rx_count = I2C_NBYTES_MAX;
				reg |= I2C_CR2_RELOAD;
			} else {
				rx_count = nbytes;
				reg |= I2C_CR2_AUTOEND;
			}
			reg |= rx_count << I2C_CR2_NBYTES_Pos;
			nbytes -= rx_count;
			I2Cx->CR2 = reg;
		}
	}

	// Wait for the STOP flag
	wait = delay_val;
	while (!(I2Cx->ISR & I2C_ISR_STOPF) && --wait);

	return (wait) ? I2C_SUCCESS : I2C_ERROR;
}