aboutsummaryrefslogtreecommitdiff
path: root/center_fw/src/main.c
blob: 53b6aae68f541a258b0a408ae29fda6f709970b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/* Megumin LED display firmware
 * Copyright (C) 2018 Sebastian Götte <code@jaseg.net>
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "global.h"
#include "8b10b.h"

static uint16_t adc_data[64*2];
static volatile struct state_8b10b_dec st_8b10b_dec;

static void quicksort(uint16_t *head, uint16_t *tail);

int main(void) {
    /* Configure clocks for 64 MHz system clock.
     * 
     * HSI @ 16 MHz --[PLL x16 /4]--> PLL "R" clock @ 64 MHz
     */
    /* Enable peripherals */
    RCC->APBENR1 |= RCC_APBENR1_PWREN;
    /* Increase flash wait states to 2 required for operation above 48 MHz */
    FLASH->ACR = FLASH_ACR_ICEN | FLASH_ACR_PRFTEN | (FLASH->ACR & ~FLASH_ACR_LATENCY_Msk) | (2<<FLASH_ACR_LATENCY_Pos);
    while ((FLASH->ACR & FLASH_ACR_LATENCY_Msk) != (2<<FLASH_ACR_LATENCY_Pos)) {
        /* wait for flash controller to acknowledge change. */
    }
    /* Configure PLL with multiplier 16, divisor 2 for "R" output, and enable "R" (sysclk) output */
    RCC->PLLCFGR = (16<<RCC_PLLCFGR_PLLN_Pos) | (2<<RCC_PLLCFGR_PLLSRC_Pos) | (3<<RCC_PLLCFGR_PLLR_Pos) | RCC_PLLCFGR_PLLREN;
    RCC->CR |= RCC_CR_PLLON;
    while (!(RCC->CR & RCC_CR_PLLRDY)) {
        /* wait for PLL to stabilize. */
    }
    /* Switch SYSCLK to PLL source. */
    RCC->CFGR |= (2<<RCC_CFGR_SW_Pos);
    while ((RCC->CFGR & RCC_CFGR_SWS_Msk) != (2<<RCC_CFGR_SWS_Pos)) {
        /* wait for RCC to switch over. */
    }

    RCC->AHBENR |= RCC_AHBENR_DMA1EN;
    RCC->APBENR1 |= RCC_APBENR1_TIM3EN | RCC_APBENR1_DBGEN;
    RCC->APBENR2 |= RCC_APBENR2_TIM1EN | RCC_APBENR2_ADCEN;
    RCC->IOPENR |= RCC_IOPENR_GPIOAEN | RCC_IOPENR_GPIOBEN | RCC_IOPENR_GPIOCEN;

    /*
    TIM1->PSC = 0;
    TIM1->ARR = nominal_period;
    TIM1->DIER = TIM_DIER_UIE | TIM_DIER_CC1IE;
    TIM1->CR1 = TIM_CR1_ARPE | TIM_CR1_CEN;
    TIM1->CCR1 = 3000;
    NVIC_EnableIRQ(TIM1_BRK_UP_TRG_COM_IRQn);
    NVIC_SetPriority(TIM1_BRK_UP_TRG_COM_IRQn, 0);
    NVIC_EnableIRQ(TIM1_CC_IRQn);
    NVIC_SetPriority(TIM1_CC_IRQn, 0);
    */

    xfr_8b10b_reset((struct state_8b10b_dec *)&st_8b10b_dec);

    TIM3->CR1 = TIM_CR1_ARPE;
    TIM3->CR2 = (2<<TIM_CR2_MMS_Pos); /* Update event on TRGO */
    TIM3->PSC = 0;
    /* We sample 32 times per 1 kHz AC cycle, and use 32 times oversampling. */
    TIM3->ARR = 125*16; /* Output 64 MHz / 125 = 512 kHz signal */
    TIM3->CR1 |= TIM_CR1_CEN;
    
    DMAMUX1[0].CCR = 5; /* ADC */
    DMA1_Channel1->CPAR = (uint32_t)&ADC1->DR;
    DMA1_Channel1->CMAR = (uint32_t)(void *)adc_data;
    DMA1_Channel1->CNDTR = COUNT_OF(adc_data);
    DMA1_Channel1->CCR = (1<<DMA_CCR_MSIZE_Pos) | (1<<DMA_CCR_PSIZE_Pos) | DMA_CCR_MINC | DMA_CCR_CIRC | DMA_CCR_HTIE | DMA_CCR_TCIE;
    DMA1_Channel1->CCR |= DMA_CCR_EN;

    NVIC_EnableIRQ(DMA1_Channel1_IRQn);
    NVIC_SetPriority(DMA1_Channel1_IRQn, 64);

    ADC1->ISR = ADC_ISR_CCRDY | ADC_ISR_ADRDY; /* Clear CCRDY */
    ADC1->CR = ADC_CR_ADVREGEN;
    delay_us(20);
    ADC1->CR = ADC_CR_ADCAL;
    while (ADC1->CR & ADC_CR_ADCAL) {
        /* wait. */
    }
    ADC1->CFGR1 = (1<<ADC_CFGR1_EXTEN_Pos) | (3<<ADC_CFGR1_EXTSEL_Pos) | ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG; /* TIM3 TRGO */
    ADC1->CFGR2 = (1<<ADC_CFGR2_CKMODE_Pos) | (4<<ADC_CFGR2_OVSR_Pos) | (1<<ADC_CFGR2_OVSS_Pos) | ADC_CFGR2_OVSE;
    ADC1->CHSELR = (1<<4); /* Enable input 4 -> PA4 (Vdiff)*/
    while (!(ADC1->ISR & ADC_ISR_CCRDY)) {
        /* wait. */
    }
    ADC1->ISR = ADC_ISR_CCRDY; /* Clear CCRDY */
    ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN;
    ADC1->CR = ADC_CR_ADVREGEN | ADC_CR_ADEN;
    while (!(ADC1->ISR & ADC_ISR_ADRDY)) {
        /* wait. */
    }
    ADC1->CR |= ADC_CR_ADSTART;

    GPIOA->MODER = OUT(0) | IN(1) | OUT(2) | OUT(3) | ANALOG(4) | OUT(5) | OUT(6) | IN(7) | ANALOG(9) | ANALOG(10) | OUT(11) | ANALOG(12)| AF(13) | AF(14);
    GPIOB->MODER = ANALOG(0) | OUT(3) | ANALOG(1) | ANALOG(2) | ANALOG(4) | ANALOG(5) | ANALOG(6) | ANALOG(8) | OUT(7) | ANALOG(9);
    GPIOC->MODER = OUT(15) | ANALOG(14) | ANALOG(9);

    DBG->APBFZ1 |= DBG_APB_FZ1_DBG_TIM3_STOP;
    DBG->APBFZ2 |= DBG_APB_FZ2_DBG_TIM1_STOP;
    while (42) {
    }
}

/*
void TIM1_BRK_UP_TRG_COM_IRQHandler(void) {
    TIM1->SR &= ~TIM_SR_UIF;
}

void TIM1_CC_IRQHandler(void) {
    TIM1->SR &= ~TIM_SR_CC1IF;
}
*/
static size_t received_symbols = 0;
static int symbol_buf[32];
static size_t received_bits = 0;
static int16_t bit_buf[256];
size_t adc_reduced_pos = 0;
static uint8_t adc_reduced[4096];

void DMA1_Channel1_IRQHandler(void) {
    static int sampling_phase = 0;
    static int last_sample = 0;

    uint16_t *buf = (DMA1->ISR & DMA_ISR_HTIF1) ? &adc_data[0] : &adc_data[COUNT_OF(adc_data)/2];
    DMA1->IFCR = DMA_IFCR_CGIF1;
    GPIOB->BSRR = (1<<7);

    const int threshold_adc_counts = 28500;
    const int sample_per_baud = 16;

    for (size_t i=0; i<COUNT_OF(adc_data)/2; i++) {
        int sample = buf[i];

        adc_reduced[adc_reduced_pos] = (sample & 0xffff)>>9;
        if (adc_reduced_pos == 0) {
            asm volatile ("bkpt");
        }

        if ((last_sample <= threshold_adc_counts && sample >= threshold_adc_counts) ||
            (last_sample >= threshold_adc_counts && sample <= threshold_adc_counts)){
            sampling_phase = sample_per_baud / 4; /* /2 for half baud sampling point, /2 for sinusoidal edge shape */

        } else if (sampling_phase == 0) {
            int bit = sample < threshold_adc_counts;
            adc_reduced[adc_reduced_pos] |= 0x80;

            bit_buf[received_bits] = bit;
            received_bits = (received_bits+1) % COUNT_OF(bit_buf);

            int rc =  xfr_8b10b_feed_bit((struct state_8b10b_dec *)&st_8b10b_dec, bit);
            if (rc > -K_CODES_LAST) {
                symbol_buf[received_symbols] = rc;
                received_symbols = (received_symbols+1) % COUNT_OF(symbol_buf);
            }
            sampling_phase = sample_per_baud;

        } else {
            sampling_phase--;
        }

        adc_reduced_pos = (adc_reduced_pos+1) % COUNT_OF(adc_reduced);
        last_sample = sample;
    }

    GPIOB->BRR = (1<<7);
}

void delay_us(int duration_us) {
    while (duration_us--) {
        for (int i=0; i<32; i++) {
            asm volatile ("nop");
        }
    }
}

void NMI_Handler(void) {
    asm volatile ("bkpt");
}

void HardFault_Handler(void) __attribute__((naked));
void HardFault_Handler() {
    asm volatile ("bkpt");
}

void SVC_Handler(void) {
    asm volatile ("bkpt");
}


void PendSV_Handler(void) {
    asm volatile ("bkpt");
}

void __libc_init_array (void) __attribute__((weak));
void __libc_init_array () {
}

/* https://github.com/openmv/openmv/blob/2e8d5d505dbe695b8009d832e5ef7691009148e1/src/omv/common/array.c#L117 */
static void quicksort(uint16_t *head, uint16_t *tail) {
    while (head < tail) {
        uint16_t *h = head - 1;
        uint16_t *t = tail;
        uint16_t v = tail[0];
        for (;;) {
            do {
                ++h;
            } while (h < t && h[0] < v);
            do {
                --t;
            } while (h < t && v < t[0]);
            if (h >= t) {
                break;
            }
            uint16_t x = h[0];
            h[0] = t[0];
            t[0] = x;
        }
        uint16_t x = h[0];
        h[0] = tail[0];
        tail[0] = x;
        // do the smaller recursive call first, to keep stack within O(log(N))
        if (t - head < tail - h - 1) {
            quicksort(head, t);
            head = h + 1;
        } else {
            quicksort(h + 1, tail);
            tail = t;
        }
    }
}