1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
/* Megumin LED display firmware
* Copyright (C) 2018 Sebastian Götte <code@jaseg.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "global.h"
#include "8b10b.h"
#include "crc32.h"
#include "protocol.h"
#include "xorshift.h"
static volatile struct state_8b10b_dec st_8b10b_dec;
/* Modulation constants */
#define THRESHOLD_ADC_COUNTS 28500 /* ADC counts */
#define MIN_RECTIFIER_MARGIN 5000 /* ADC counts */
#define SAMPLES_PER_BAUD 16
#define OVERSAMPLING_RATIO 16
#define SAMPLING_PHASE (SAMPLES_PER_BAUD / 2)
#define LED_DEAD_TIME 4 /* in ADC samples */
#ifndef CONFIG_MODULE_ADDRESS
#warn "CONFIG_MODULE_ADDRESS is not defined, defaulting to 0."
#define CONFIG_MODULE_ADDRESS 0
#endif /* CONFIG_MODULE_ADDRESS */
#define DEBUG_DISABLE_DRIVERS 1
volatile union {
struct data_packet packet;
uint8_t bytes[sizeof(struct data_packet)];
} rx_buf;
volatile ssize_t rx_pos;
volatile bool packet_received;
volatile bool rng_reset;
uint32_t packet_rng_state = 0;
struct data_packet foobar;
int global_brightness;
int channel_mask;
struct error_counters {
int crc_errors;
int receive_overflows;
int processing_overflows;
int decoding_errors;
} errors;
/* generated by ./gamma.py */
uint16_t brightness_lut[16] = {
54, 247, 604, 1137, 1857, 2774, 3894, 5223,
6768, 8534, 10525, 12745, 15199, 17891, 20823, 24000
};
int main(void) {
/* Configure clocks for 64 MHz system clock.
*
* HSI @ 16 MHz --[PLL x16 /4]--> PLL "R" clock @ 64 MHz
*/
/* Enable peripherals */
RCC->APBENR1 |= RCC_APBENR1_PWREN;
/* Increase flash wait states to 2 required for operation above 48 MHz */
FLASH->ACR = FLASH_ACR_ICEN | FLASH_ACR_PRFTEN | (FLASH->ACR & ~FLASH_ACR_LATENCY_Msk) | (2<<FLASH_ACR_LATENCY_Pos);
while ((FLASH->ACR & FLASH_ACR_LATENCY_Msk) != (2<<FLASH_ACR_LATENCY_Pos)) {
/* wait for flash controller to acknowledge change. */
}
/* Configure PLL with multiplier 16, divisor 2 for "R" output, and enable "R" (sysclk) output */
RCC->PLLCFGR = (16<<RCC_PLLCFGR_PLLN_Pos) | (2<<RCC_PLLCFGR_PLLSRC_Pos) | (3<<RCC_PLLCFGR_PLLR_Pos) | RCC_PLLCFGR_PLLREN;
RCC->CR |= RCC_CR_PLLON;
while (!(RCC->CR & RCC_CR_PLLRDY)) {
/* wait for PLL to stabilize. */
}
/* Switch SYSCLK to PLL source. */
RCC->CFGR |= (2<<RCC_CFGR_SW_Pos);
while ((RCC->CFGR & RCC_CFGR_SWS_Msk) != (2<<RCC_CFGR_SWS_Pos)) {
/* wait for RCC to switch over. */
}
RCC->AHBENR |= RCC_AHBENR_DMA1EN;
RCC->APBENR1 |= RCC_APBENR1_TIM3EN | RCC_APBENR1_DBGEN;
RCC->APBENR2 |= RCC_APBENR2_TIM1EN | RCC_APBENR2_ADCEN | RCC_APBENR2_TIM14EN;
RCC->IOPENR |= RCC_IOPENR_GPIOAEN | RCC_IOPENR_GPIOBEN | RCC_IOPENR_GPIOCEN;
TIM14->CR1 = TIM_CR1_ARPE | TIM_CR1_OPM;
/* External clock mode, with TIM 3 as source */
TIM14->PSC = 0;
static_assert(125 * (SAMPLES_PER_BAUD - LED_DEAD_TIME) * OVERSAMPLING_RATIO <= 0xffff);
TIM14->ARR = 125 * (SAMPLES_PER_BAUD - LED_DEAD_TIME) * OVERSAMPLING_RATIO;
TIM14->CCER = TIM_CCER_CC1E;
TIM14->DIER = TIM_DIER_CC1IE;
NVIC_EnableIRQ(TIM14_IRQn);
NVIC_SetPriority(TIM14_IRQn, 1<<6);
for (int i=0; i<COUNT_OF(brightness_lut); i++) {
}
xfr_8b10b_reset((struct state_8b10b_dec *)&st_8b10b_dec);
rx_pos = -1;
packet_received = false;
rng_reset = false;
memset(&errors, 0, sizeof(errors));
TIM3->CR1 = TIM_CR1_ARPE;
TIM3->CR2 = (2<<TIM_CR2_MMS_Pos); /* Update event on TRGO */
TIM3->PSC = 0;
/* We sample 32 times per 1 kHz AC cycle, and use 32 times oversampling. */
TIM3->ARR = 125; /* Output 64 MHz / 125 = 512.0 kHz signal */
TIM3->CR1 |= TIM_CR1_CEN;
ADC1->ISR = ADC_ISR_CCRDY | ADC_ISR_ADRDY; /* Clear CCRDY */
ADC1->CR = ADC_CR_ADVREGEN;
delay_us(20);
ADC1->CR = ADC_CR_ADCAL;
while (ADC1->CR & ADC_CR_ADCAL) {
/* wait. */
}
ADC1->CFGR1 = (1<<ADC_CFGR1_EXTEN_Pos) | (3<<ADC_CFGR1_EXTSEL_Pos); /* TIM3 TRGO */
ADC1->CFGR2 = (1<<ADC_CFGR2_CKMODE_Pos) | (3<<ADC_CFGR2_OVSR_Pos) | (0<<ADC_CFGR2_OVSS_Pos) | ADC_CFGR2_TOVS | ADC_CFGR2_OVSE;
ADC1->CHSELR = (1<<4); /* Enable input 4 -> PA4 (Vdiff)*/
while (!(ADC1->ISR & ADC_ISR_CCRDY)) {
/* wait. */
}
ADC1->ISR = ADC_ISR_CCRDY; /* Clear CCRDY */
ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN;
ADC1->CR = ADC_CR_ADVREGEN | ADC_CR_ADEN;
while (!(ADC1->ISR & ADC_ISR_ADRDY)) {
/* wait. */
}
ADC1->IER = ADC_IER_EOCIE;
NVIC_EnableIRQ(ADC1_IRQn);
NVIC_SetPriority(ADC1_IRQn, 0);
ADC1->CR |= ADC_CR_ADSTART;
GPIOA->MODER = OUT(0) | IN(1) | OUT(2) | OUT(3) | ANALOG(4) | OUT(5) | OUT(6) | IN(7) | ANALOG(9) | ANALOG(10) | OUT(11) | ANALOG(12)| AF(13) | AF(14);
GPIOB->MODER = ANALOG(0) | OUT(3) | ANALOG(1) | ANALOG(2) | ANALOG(4) | ANALOG(5) | ANALOG(6) | ANALOG(8) | OUT(7) | ANALOG(9);
GPIOC->MODER = OUT(15) | ANALOG(14) | ANALOG(9);
DBG->APBFZ1 |= DBG_APB_FZ1_DBG_TIM3_STOP;
DBG->APBFZ2 |= DBG_APB_FZ2_DBG_TIM1_STOP;
while (42) {
if (packet_received) {
if (rng_reset) {
packet_rng_state = xorshift32(1);
rng_reset = false;
GPIOB->BSRR = (1<<7);
} else {
GPIOB->BRR = (1<<7);
}
for(size_t i=0; i<sizeof(rx_buf.packet); i++) {
packet_rng_state = xorshift32(packet_rng_state);
rx_buf.bytes[i] ^= packet_rng_state;
}
uint32_t crc_state = crc32_reset();
for(size_t i=0; i<offsetof(struct data_packet, crc); i++) {
crc_state = crc32_update(crc_state, rx_buf.bytes[i]);
}
crc_state = crc32_finalize(crc_state);
if (crc_state == rx_buf.packet.crc) {
GPIOA->BSRR = (1<<6);
/* good packet received */
int val = rx_buf.packet.brightness[CONFIG_MODULE_ADDRESS/2];
if (CONFIG_MODULE_ADDRESS & 1) {
val >>= 4;
}
global_brightness = val;
channel_mask = rx_buf.packet.channels[CONFIG_MODULE_ADDRESS];
} else {
GPIOA->BRR = (1<<6);
errors.crc_errors++;
}
packet_received = false;
}
}
}
int16_t sym_dump[512];
size_t sym_dump_pos = 0;
uint8_t adc_dump[32];
size_t adc_dump_pos = 0;
uint8_t bit_dump[4096];
size_t bit_dump_pos = 0;
bool armed = false;
void gdb_dump(void) {
armed = false;
}
void ADC1_IRQHandler(void) {
static int phase = 0;
static int last_bit = 0;
/* Read sample and apply threshold */
int sample = ADC1->DR; /* resets the EOC interrupt flag */
int bit = sample > THRESHOLD_ADC_COUNTS;
int bit_margin = ((int)sample) - THRESHOLD_ADC_COUNTS;
if (bit_margin < 0) {
bit_margin = -bit_margin;
}
adc_dump[adc_dump_pos] = (sample>>10) & 0x3f;
/* Find edges and compute current phase */
if (bit && !last_bit) { /* rising edge */
phase = 0;
adc_dump[adc_dump_pos] |= 0x40;
} else if (last_bit && !bit) { /* falling edge */
phase = 0;
adc_dump[adc_dump_pos] |= 0x40;
} else {
phase ++;
if (phase == SAMPLES_PER_BAUD) {
phase = 0;
}
}
/* Trigger 8b10b sample */
if (phase == SAMPLING_PHASE) {
adc_dump[adc_dump_pos] |= 0x80;
bit_dump[bit_dump_pos] = bit;
bit_dump_pos++;
if (bit_dump_pos == COUNT_OF(bit_dump)) {
bit_dump_pos = 0;
armed = true;
}
int rc = xfr_8b10b_feed_bit((struct state_8b10b_dec *)&st_8b10b_dec, bit);
if (rc == 0xfb) {
if (armed)
gdb_dump();
}
if (rc > -K_CODES_LAST) {
sym_dump[sym_dump_pos++] = rc;
if (sym_dump_pos == COUNT_OF(sym_dump)) {
sym_dump_pos = 0;
}
if (rc < 0) {
if (rc == -K28_1) {
rng_reset = true;
rx_pos = 0;
} else if (rc == -K27_7) {
if (rx_pos >= 0) {
rx_pos = 0;
}
} else {
rx_pos = -1;
}
} else {
if (packet_received) {
/* receive buffer overflow */
rx_pos = -1;
errors.processing_overflows++;
} else {
if (rx_pos == sizeof(rx_buf.packet)) {
/* receive buffer overflow */
rx_pos = -1;
errors.receive_overflows++;
}
rx_buf.bytes[rx_pos] = rc;
rx_pos++;
if (rx_pos == sizeof(rx_buf.packet)) {
packet_received = true;
}
}
}
} else if (rc == -DECODING_ERROR) {
errors.decoding_errors++;
}
}
adc_dump_pos++;
if (adc_dump_pos == COUNT_OF(adc_dump)) {
adc_dump_pos = 0;
}
/* Trigger synchronous rectifier */
if (phase == SAMPLES_PER_BAUD - LED_DEAD_TIME || bit != last_bit || bit_margin < MIN_RECTIFIER_MARGIN) { /* reset */
GPIOA->BRR = (1<<11); /* RECT1 */
GPIOC->BRR = (1<<15); /* RECT2 */
} else if (phase == LED_DEAD_TIME) { /* set */
if (bit) {
#ifndef DEBUG_DISABLE_DRIVERS
GPIOC->BSRR = (1<<15); /* RECT2 */
#endif
} else {
#ifndef DEBUG_DISABLE_DRIVERS
GPIOA->BSRR = (1<<11); /* RECT1 */
#endif
}
int nibble = (bit ? (channel_mask >> 4) : channel_mask) & 0x0f;
int b0 = (nibble>>0) & 1;
int b1 = (nibble>>1) & 1;
int b2 = (nibble>>2) & 1;
int b3 = (nibble>>3) & 1;
#ifndef DEBUG_DISABLE_DRIVERS
GPIOA->BSRR = (b0<<2) | (b3<<3) | (b2<<5);
GPIOB->BSRR = (b1<<3);
#endif
TIM14->CCR1 = brightness_lut[global_brightness];
TIM14->CR1 |= TIM_CR1_CEN;
}
last_bit = bit;
}
void TIM14_IRQHandler(void) {
TIM14->SR = 0;
/* Reset all LED outputs */
GPIOA->BRR = (1<<2) | (1<<3) | (1<<5);
GPIOB->BRR = (1<<3);
}
void delay_us(int duration_us) {
while (duration_us--) {
for (int i=0; i<32; i++) {
asm volatile ("nop");
}
}
}
void *memset(void *s, int c, size_t n) {
uint8_t *b = (uint8_t *)s;
while (n--) {
*b++ = c;
}
return s;
}
void NMI_Handler(void) {
asm volatile ("bkpt");
}
void HardFault_Handler(void) __attribute__((naked));
void HardFault_Handler() {
asm volatile ("bkpt");
}
void SVC_Handler(void) {
asm volatile ("bkpt");
}
void PendSV_Handler(void) {
asm volatile ("bkpt");
}
void __libc_init_array (void) __attribute__((weak));
void __libc_init_array () {
}
|