1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
|
/* Megumin LED display firmware
* Copyright (C) 2018 Sebastian Götte <code@jaseg.net>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "global.h"
#include "adc.h"
#include "8seg_protocol.h"
#include "transmit.h"
volatile unsigned int sys_time = 0;
volatile unsigned int sys_time_seconds = 0;
uint16_t jitter_meas_avg_ns = 0;
void TIM1_BRK_UP_TRG_COM_Handler() {
TIM1->SR &= ~TIM_SR_UIF_Msk;
}
void set_drv_gpios(uint8_t val) {
val = ~val;
int a=!(val&1), b=!(val&2), c=!(val&4), d=!(val&8);
GPIOA->BSRR = (((!a)<<3 | (!b)<<7 | (!c)<<6 | (!d)<<4)<<16) | ((a<<3) | (b<<7) | (c<<6) | (d<<4));
}
uint8_t out_state = 0x0f;
void set_outputs(uint8_t val[8]) {
/* TODO implement BCM for digital brightness control */
int x = 0;
for (int i=0; i<8; i++)
if (val[i] > 127)
x |= 1<<i;
out_state = x;
}
void set_outputs_binary(int mask, int global_brightness) {
uint8_t val[8];
for (int i=0; i<8; i++)
val[i] = (mask & (1<<i)) ? global_brightness : 0;
set_outputs(val);
}
void set_load(bool load) {
GPIOA->BSRR = (1<<2) << (load ? 0 : 16);
}
void blank(void) {
GPIOA->BRR = (1<<9) | (1<<10);
set_drv_gpios(0);
}
bool has_sync = 0;
void unblank_low(int bit) {
if (backchannel_frame) { /* Set from protocol.c */
if (tx_next_bit() == 1)
set_load(1);
else /* 0; but also TX_IDLE */
set_load(0);
} else if (has_sync) {
if (bit) {
//GPIOA->BSRR = (1<<10);
set_drv_gpios(out_state & 0xf);
} else {
//GPIOA->BSRR = (1<<9);
set_drv_gpios(out_state >> 4);
}
}
}
int sync_ctr = 0xffff;
void TIM3_IRQHandler(void) {
if (TIM3->SR & TIM_SR_CC2IF) {
if (sync_ctr > 10)
has_sync = 0;
else
sync_ctr += 1;
EXTI->IMR = (1<<0);
GPIOB->BSRR = (1<<1);
GPIOA->BRR = (1<<9) | (1<<10);
} else if (TIM3->SR & TIM_SR_CC3IF) {
int bit = GPIOA->IDR & (1<<5); /* Sample current polarity */
unblank_low(!bit);
} else {
blank();
}
TIM3->SR = 0;
}
void EXTI0_1_IRQHandler(void) {
static uint32_t jitter_meas_sum = 0, jitter_meas_cnt = 0;
EXTI->PR = (1<<0);
/* Store old counter value for jitter measurement. Let it overflow to handle negative offsets. */
int16_t cnt = (int16_t)TIM3->CNT;
/* Re-initialize the counter to align it with the signal edge */
TIM3->EGR |= TIM_EGR_UG;
/* Don't handle overflow of _sum here since this value is only for monitoring anyway */
jitter_meas_sum += (cnt >= 0) ? cnt : -cnt;
if (++jitter_meas_cnt == 1000) { /* One measurement roughly every 800ms */
jitter_meas_avg_ns = jitter_meas_sum;
}
EXTI->IMR = 0;
GPIOB->BRR = (1<<1);
has_sync = 1;
sync_ctr = 0;
}
int main(void) {
//RCC->CR |= RCC_CR_HSEON;
//while (!(RCC->CR&RCC_CR_HSERDY));
RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk;
RCC->CFGR |= ((12-2)<<RCC_CFGR_PLLMUL_Pos); /* PLL / 2 * 12 -> 48.0MHz */
RCC->CR |= RCC_CR_PLLON;
while (!(RCC->CR&RCC_CR_PLLRDY));
RCC->CFGR |= (2<<RCC_CFGR_SW_Pos);
SystemCoreClockUpdate();
SysTick_Config(SystemCoreClock/1000); /* 1ms interval */
/* Turn on lots of neat things */
RCC->AHBENR |= RCC_AHBENR_DMAEN | RCC_AHBENR_GPIOAEN | RCC_AHBENR_GPIOBEN | RCC_AHBENR_FLITFEN;
RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN | RCC_APB2ENR_ADCEN| RCC_APB2ENR_DBGMCUEN | RCC_APB2ENR_TIM1EN | RCC_APB2ENR_TIM1EN;;
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
/* TIM3 foo */
TIM3->CCMR2 = (6<<TIM_CCMR2_OC4M_Pos); /* PWM Mode 1 to get a clean trigger signal */
TIM3->CCER = TIM_CCER_CC4E; /* Enable capture/compare unit 4 connected to ADC */
TIM3->CCER = TIM_CCER_CC3E; /* Enable capture/compare unit 3 for unblank interrupt */
TIM3->CCER = TIM_CCER_CC2E;
TIM3->PSC = 48-1; /* 48MHz -> 1MHz */
TIM3->CCR2 = 800-1-1;
TIM3->CCR3 = 100-1; /* CC3 is used for unblanking in the ISR, fires 30us after beginning of cycle. */
TIM3->CCR4 = 800-100-1; /* CC4 is ADC trigger, fire 30us before end of cycle. */
TIM3->ARR = 800-1; /* 1MHz -> 5kHz */
TIM3->DIER |= TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE | TIM_DIER_UIE;
TIM3->CR1 |= TIM_CR1_CEN;
NVIC_EnableIRQ(TIM3_IRQn);
NVIC_SetPriority(TIM3_IRQn, 3<<5);
GPIOB->MODER |= (1<<GPIO_MODER_MODER1_Pos);
GPIOB->OSPEEDR |= (2<<GPIO_OSPEEDR_OSPEEDR1_Pos);
EXTI->IMR = (1<<0); /* PA0 Vmeas_A for sync */
EXTI->RTSR |= (1<<0);
NVIC_EnableIRQ(EXTI0_1_IRQn);
NVIC_SetPriority(EXTI0_1_IRQn, 4<<5);
GPIOA->MODER |=
(0<<GPIO_MODER_MODER0_Pos) /* PA0 - Vmeas_A to ADC */
| (0<<GPIO_MODER_MODER1_Pos) /* PA1 - Unused */
| (1<<GPIO_MODER_MODER2_Pos) /* PA2 - LOAD */
| (1<<GPIO_MODER_MODER3_Pos) /* PA3 - CH0 */
| (1<<GPIO_MODER_MODER4_Pos) /* PA4 - CH3 */
| (0<<GPIO_MODER_MODER5_Pos) /* PA5 - TP1 */
| (1<<GPIO_MODER_MODER6_Pos) /* PA6 - CH2 */
| (1<<GPIO_MODER_MODER7_Pos) /* PA7 - CH1 */
| (1<<GPIO_MODER_MODER9_Pos) /* PA9 - synchronous rectifier bypass A */
| (1<<GPIO_MODER_MODER10_Pos);/* PA10 - synchronous rectifier bypass B */
GPIOA->PUPDR |= (2<<GPIO_PUPDR_PUPDR5_Pos);
/* Set shift register IO GPIO output speed */
GPIOA->OSPEEDR |=
(2<<GPIO_OSPEEDR_OSPEEDR2_Pos) /* LOAD */
| (2<<GPIO_OSPEEDR_OSPEEDR3_Pos) /* CH0 */
| (2<<GPIO_OSPEEDR_OSPEEDR4_Pos) /* CH3 */
| (2<<GPIO_OSPEEDR_OSPEEDR6_Pos) /* CH2 */
| (2<<GPIO_OSPEEDR_OSPEEDR7_Pos) /* CH1 */
| (2<<GPIO_OSPEEDR_OSPEEDR9_Pos) /* synchronous rectifier bypass A */
| (2<<GPIO_OSPEEDR_OSPEEDR10_Pos); /* synchronous rectifier bypass B */
set_drv_gpios(0);
protocol_init();
int cnt = 0;
int seg_c = 0;
while (42) {
/*
if (cnt > 10000) {
cnt = 0;
seg_c += 1;
if (seg_c == 8)
seg_c = 0;
set_outputs_binary(1<<seg_c, 255);
} else {
cnt = cnt+1;
}
*/
/* idle */
}
}
void NMI_Handler(void) {
asm volatile ("bkpt");
}
void HardFault_Handler(void) __attribute__((naked));
void HardFault_Handler() {
asm volatile ("bkpt");
}
void SVC_Handler(void) {
asm volatile ("bkpt");
}
void PendSV_Handler(void) {
asm volatile ("bkpt");
}
void SysTick_Handler(void) {
static int n = 0;
sys_time++;
if (n++ == 1000) {
n = 0;
sys_time_seconds++;
}
}
|