1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
|
/**************************************************************************//**
* @file cmsis_gcc.h
* @brief CMSIS compiler GCC header file
* @version V5.2.0
* @date 08. May 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_GCC_H
#define __CMSIS_GCC_H
/* ignore some GCC warnings */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
#pragma GCC diagnostic ignored "-Wconversion"
#pragma GCC diagnostic ignored "-Wunused-parameter"
/* Fallback for __has_builtin */
#ifndef __has_builtin
#define __has_builtin(x) (0)
#endif
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __attribute__((always_inline)) static inline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((__noreturn__))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed, aligned(1)))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __attribute__((packed, aligned(1)))
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"
struct __attribute__((packed)) T_UINT32 { uint32_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpacked"
#pragma GCC diagnostic ignored "-Wattributes"
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#pragma GCC diagnostic pop
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __ASM volatile("":::"memory")
#endif
/* ######################### Startup and Lowlevel Init ######################## */
#ifndef __PROGRAM_START
/**
\brief Initializes data and bss sections
\details This default implementations initialized all data and additional bss
sections relying on .copy.table and .zero.table specified properly
in the used linker script.
*/
__STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void)
{
extern void _start(void) __NO_RETURN;
typedef struct {
uint32_t const* src;
uint32_t* dest;
uint32_t wlen;
} __copy_table_t;
typedef struct {
uint32_t* dest;
uint32_t wlen;
} __zero_table_t;
extern const __copy_table_t __copy_table_start__;
extern const __copy_table_t __copy_table_end__;
extern const __zero_table_t __zero_table_start__;
extern const __zero_table_t __zero_table_end__;
for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) {
for(uint32_t i=0u; i<pTable->wlen; ++i) {
pTable->dest[i] = pTable->src[i];
}
}
for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) {
for(uint32_t i=0u; i<pTable->wlen; ++i) {
pTable->dest[i] = 0u;
}
}
_start();
}
#define __PROGRAM_START __cmsis_start
#endif
#ifndef __INITIAL_SP
#define __INITIAL_SP __StackTop
#endif
#ifndef __STACK_LIMIT
#define __STACK_LIMIT __StackLimit
#endif
#ifndef __VECTOR_TABLE
#define __VECTOR_TABLE __Vectors
#endif
#ifndef __VECTOR_TABLE_ATTRIBUTE
#define __VECTOR_TABLE_ATTRIBUTE __attribute((used, section(".vectors")))
#endif
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
/**
\brief Enable IRQ Interrupts
\details Enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __enable_irq(void)
{
__ASM volatile ("cpsie i" : : : "memory");
}
/**
\brief Disable IRQ Interrupts
\details Disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __disable_irq(void)
{
__ASM volatile ("cpsid i" : : : "memory");
}
/**
\brief Get Control Register
\details Returns the content of the Control Register.
\return Control Register value
*/
__STATIC_FORCEINLINE uint32_t __get_CONTROL(void)
{
uint32_t result;
__ASM volatile ("MRS %0, control" : "=r" (result) );
return(result);
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Get Control Register (non-secure)
\details Returns the content of the non-secure Control Register when in secure mode.
\return non-secure Control Register value
*/
__STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void)
{
uint32_t result;
__ASM volatile ("MRS %0, control_ns" : "=r" (result) );
return(result);
}
#endif
/**
\brief Set Control Register
\details Writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)
{
__ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Set Control Register (non-secure)
\details Writes the given value to the non-secure Control Register when in secure state.
\param [in] control Control Register value to set
*/
__STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control)
{
__ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
}
#endif
/**
\brief Get IPSR Register
\details Returns the content of the IPSR Register.
\return IPSR Register value
*/
__STATIC_FORCEINLINE uint32_t __get_IPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, ipsr" : "=r" (result) );
return(result);
}
/**
\brief Get APSR Register
\details Returns the content of the APSR Register.
\return APSR Register value
*/
__STATIC_FORCEINLINE uint32_t __get_APSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, apsr" : "=r" (result) );
return(result);
}
/**
\brief Get xPSR Register
\details Returns the content of the xPSR Register.
\return xPSR Register value
*/
__STATIC_FORCEINLINE uint32_t __get_xPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, xpsr" : "=r" (result) );
return(result);
}
/**
\brief Get Process Stack Pointer
\details Returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__STATIC_FORCEINLINE uint32_t __get_PSP(void)
{
uint32_t result;
__ASM volatile ("MRS %0, psp" : "=r" (result) );
return(result);
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Get Process Stack Pointer (non-secure)
\details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
\return PSP Register value
*/
__STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void)
{
uint32_t result;
__ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
return(result);
}
#endif
/**
\brief Set Process Stack Pointer
\details Assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack)
{
__ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Set Process Stack Pointer (non-secure)
\details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
{
__ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
}
#endif
/**
\brief Get Main Stack Pointer
\details Returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__STATIC_FORCEINLINE uint32_t __get_MSP(void)
{
uint32_t result;
__ASM volatile ("MRS %0, msp" : "=r" (result) );
return(result);
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Get Main Stack Pointer (non-secure)
\details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
\return MSP Register value
*/
__STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void)
{
uint32_t result;
__ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
return(result);
}
#endif
/**
\brief Set Main Stack Pointer
\details Assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack)
{
__ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Set Main Stack Pointer (non-secure)
\details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
{
__ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
}
#endif
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Get Stack Pointer (non-secure)
\details Returns the current value of the non-secure Stack Pointer (SP) when in secure state.
\return SP Register value
*/
__STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void)
{
uint32_t result;
__ASM volatile ("MRS %0, sp_ns" : "=r" (result) );
return(result);
}
/**
\brief Set Stack Pointer (non-secure)
\details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state.
\param [in] topOfStack Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack)
{
__ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : );
}
#endif
/**
\brief Get Priority Mask
\details Returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__STATIC_FORCEINLINE uint32_t __get_PRIMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, primask" : "=r" (result) :: "memory");
return(result);
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Get Priority Mask (non-secure)
\details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
\return Priority Mask value
*/
__STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void)
{
uint32_t result;
__ASM volatile ("MRS %0, primask_ns" : "=r" (result) :: "memory");
return(result);
}
#endif
/**
\brief Set Priority Mask
\details Assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask)
{
__ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Set Priority Mask (non-secure)
\details Assigns the given value to the non-secure Priority Mask Register when in secure state.
\param [in] priMask Priority Mask
*/
__STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
{
__ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
}
#endif
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
/**
\brief Enable FIQ
\details Enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __enable_fault_irq(void)
{
__ASM volatile ("cpsie f" : : : "memory");
}
/**
\brief Disable FIQ
\details Disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__STATIC_FORCEINLINE void __disable_fault_irq(void)
{
__ASM volatile ("cpsid f" : : : "memory");
}
/**
\brief Get Base Priority
\details Returns the current value of the Base Priority register.
\return Base Priority register value
*/
__STATIC_FORCEINLINE uint32_t __get_BASEPRI(void)
{
uint32_t result;
__ASM volatile ("MRS %0, basepri" : "=r" (result) );
return(result);
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Get Base Priority (non-secure)
\details Returns the current value of the non-secure Base Priority register when in secure state.
\return Base Priority register value
*/
__STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void)
{
uint32_t result;
__ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
return(result);
}
#endif
/**
\brief Set Base Priority
\details Assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri)
{
__ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Set Base Priority (non-secure)
\details Assigns the given value to the non-secure Base Priority register when in secure state.
\param [in] basePri Base Priority value to set
*/
__STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
{
__ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
}
#endif
/**
\brief Set Base Priority with condition
\details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
or the new value increases the BASEPRI priority level.
\param [in] basePri Base Priority value to set
*/
__STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri)
{
__ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
}
/**
\brief Get Fault Mask
\details Returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, faultmask" : "=r" (result) );
return(result);
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Get Fault Mask (non-secure)
\details Returns the current value of the non-secure Fault Mask register when in secure state.
\return Fault Mask register value
*/
__STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void)
{
uint32_t result;
__ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
return(result);
}
#endif
/**
\brief Set Fault Mask
\details Assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask)
{
__ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Set Fault Mask (non-secure)
\details Assigns the given value to the non-secure Fault Mask register when in secure state.
\param [in] faultMask Fault Mask value to set
*/
__STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
{
__ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
}
#endif
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
/**
\brief Get Process Stack Pointer Limit
Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
Stack Pointer Limit register hence zero is returned always in non-secure
mode.
\details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
\return PSPLIM Register value
*/
__STATIC_FORCEINLINE uint32_t __get_PSPLIM(void)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
return 0U;
#else
uint32_t result;
__ASM volatile ("MRS %0, psplim" : "=r" (result) );
return result;
#endif
}
#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Get Process Stack Pointer Limit (non-secure)
Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
Stack Pointer Limit register hence zero is returned always.
\details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
\return PSPLIM Register value
*/
__STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
return 0U;
#else
uint32_t result;
__ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
return result;
#endif
}
#endif
/**
\brief Set Process Stack Pointer Limit
Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
Stack Pointer Limit register hence the write is silently ignored in non-secure
mode.
\details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
\param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
*/
__STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
(void)ProcStackPtrLimit;
#else
__ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
#endif
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Set Process Stack Pointer (non-secure)
Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
Stack Pointer Limit register hence the write is silently ignored.
\details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
\param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
*/
__STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
(void)ProcStackPtrLimit;
#else
__ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
#endif
}
#endif
/**
\brief Get Main Stack Pointer Limit
Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
Stack Pointer Limit register hence zero is returned always in non-secure
mode.
\details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
\return MSPLIM Register value
*/
__STATIC_FORCEINLINE uint32_t __get_MSPLIM(void)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
return 0U;
#else
uint32_t result;
__ASM volatile ("MRS %0, msplim" : "=r" (result) );
return result;
#endif
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Get Main Stack Pointer Limit (non-secure)
Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
Stack Pointer Limit register hence zero is returned always.
\details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
\return MSPLIM Register value
*/
__STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
return 0U;
#else
uint32_t result;
__ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
return result;
#endif
}
#endif
/**
\brief Set Main Stack Pointer Limit
Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
Stack Pointer Limit register hence the write is silently ignored in non-secure
mode.
\details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
\param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
*/
__STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
(void)MainStackPtrLimit;
#else
__ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
#endif
}
#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
/**
\brief Set Main Stack Pointer Limit (non-secure)
Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure
Stack Pointer Limit register hence the write is silently ignored.
\details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
\param [in] MainStackPtrLimit Main Stack Pointer value to set
*/
__STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
(void)MainStackPtrLimit;
#else
__ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
#endif
}
#endif
#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
/**
\brief Get FPSCR
\details Returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_FORCEINLINE uint32_t __get_FPSCR(void)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
#if __has_builtin(__builtin_arm_get_fpscr)
// Re-enable using built-in when GCC has been fixed
// || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
/* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
return __builtin_arm_get_fpscr();
#else
uint32_t result;
__ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
return(result);
#endif
#else
return(0U);
#endif
}
/**
\brief Set FPSCR
\details Assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
#if __has_builtin(__builtin_arm_set_fpscr)
// Re-enable using built-in when GCC has been fixed
// || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2)
/* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */
__builtin_arm_set_fpscr(fpscr);
#else
__ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory");
#endif
#else
(void)fpscr;
#endif
}
/*@} end of CMSIS_Core_RegAccFunctions */
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
/* Define macros for porting to both thumb1 and thumb2.
* For thumb1, use low register (r0-r7), specified by constraint "l"
* Otherwise, use general registers, specified by constraint "r" */
#if defined (__thumb__) && !defined (__thumb2__)
#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
#define __CMSIS_GCC_RW_REG(r) "+l" (r)
#define __CMSIS_GCC_USE_REG(r) "l" (r)
#else
#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
#define __CMSIS_GCC_RW_REG(r) "+r" (r)
#define __CMSIS_GCC_USE_REG(r) "r" (r)
#endif
/**
\brief No Operation
\details No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP() __ASM volatile ("nop")
/**
\brief Wait For Interrupt
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
*/
#define __WFI() __ASM volatile ("wfi")
/**
\brief Wait For Event
\details Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE() __ASM volatile ("wfe")
/**
\brief Send Event
\details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV() __ASM volatile ("sev")
/**
\brief Instruction Synchronization Barrier
\details Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or memory,
after the instruction has been completed.
*/
__STATIC_FORCEINLINE void __ISB(void)
{
__ASM volatile ("isb 0xF":::"memory");
}
/**
\brief Data Synchronization Barrier
\details Acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
__STATIC_FORCEINLINE void __DSB(void)
{
__ASM volatile ("dsb 0xF":::"memory");
}
/**
\brief Data Memory Barrier
\details Ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
__STATIC_FORCEINLINE void __DMB(void)
{
__ASM volatile ("dmb 0xF":::"memory");
}
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
\param [in] value Value to reverse
\return Reversed value
*/
__STATIC_FORCEINLINE uint32_t __REV(uint32_t value)
{
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
return __builtin_bswap32(value);
#else
uint32_t result;
__ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
return result;
#endif
}
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
__STATIC_FORCEINLINE uint32_t __REV16(uint32_t value)
{
uint32_t result;
__ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
return result;
}
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
\param [in] value Value to reverse
\return Reversed value
*/
__STATIC_FORCEINLINE int16_t __REVSH(int16_t value)
{
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
return (int16_t)__builtin_bswap16(value);
#else
int16_t result;
__ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
return result;
#endif
}
/**
\brief Rotate Right in unsigned value (32 bit)
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
__STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
{
op2 %= 32U;
if (op2 == 0U)
{
return op1;
}
return (op1 >> op2) | (op1 << (32U - op2));
}
/**
\brief Breakpoint
\details Causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __ASM volatile ("bkpt "#value)
/**
\brief Reverse bit order of value
\details Reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
__STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
#else
uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
result = value; /* r will be reversed bits of v; first get LSB of v */
for (value >>= 1U; value != 0U; value >>= 1U)
{
result <<= 1U;
result |= value & 1U;
s--;
}
result <<= s; /* shift when v's highest bits are zero */
#endif
return result;
}
/**
\brief Count leading zeros
\details Counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
__STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value)
{
/* Even though __builtin_clz produces a CLZ instruction on ARM, formally
__builtin_clz(0) is undefined behaviour, so handle this case specially.
This guarantees ARM-compatible results if happening to compile on a non-ARM
target, and ensures the compiler doesn't decide to activate any
optimisations using the logic "value was passed to __builtin_clz, so it
is non-zero".
ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a
single CLZ instruction.
*/
if (value == 0U)
{
return 32U;
}
return __builtin_clz(value);
}
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
/**
\brief LDR Exclusive (8 bit)
\details Executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
#endif
return ((uint8_t) result); /* Add explicit type cast here */
}
/**
\brief LDR Exclusive (16 bit)
\details Executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
#endif
return ((uint16_t) result); /* Add explicit type cast here */
}
/**
\brief LDR Exclusive (32 bit)
\details Executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
return(result);
}
/**
\brief STR Exclusive (8 bit)
\details Executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
{
uint32_t result;
__ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
return(result);
}
/**
\brief STR Exclusive (16 bit)
\details Executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
{
uint32_t result;
__ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
return(result);
}
/**
\brief STR Exclusive (32 bit)
\details Executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
return(result);
}
/**
\brief Remove the exclusive lock
\details Removes the exclusive lock which is created by LDREX.
*/
__STATIC_FORCEINLINE void __CLREX(void)
{
__ASM volatile ("clrex" ::: "memory");
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] ARG1 Value to be saturated
\param [in] ARG2 Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT(ARG1,ARG2) \
__extension__ \
({ \
int32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] ARG1 Value to be saturated
\param [in] ARG2 Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT(ARG1,ARG2) \
__extension__ \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/**
\brief Rotate Right with Extend (32 bit)
\details Moves each bit of a bitstring right by one bit.
The carry input is shifted in at the left end of the bitstring.
\param [in] value Value to rotate
\return Rotated value
*/
__STATIC_FORCEINLINE uint32_t __RRX(uint32_t value)
{
uint32_t result;
__ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
return(result);
}
/**
\brief LDRT Unprivileged (8 bit)
\details Executes a Unprivileged LDRT instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
#endif
return ((uint8_t) result); /* Add explicit type cast here */
}
/**
\brief LDRT Unprivileged (16 bit)
\details Executes a Unprivileged LDRT instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" );
#endif
return ((uint16_t) result); /* Add explicit type cast here */
}
/**
\brief LDRT Unprivileged (32 bit)
\details Executes a Unprivileged LDRT instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr)
{
uint32_t result;
__ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
return(result);
}
/**
\brief STRT Unprivileged (8 bit)
\details Executes a Unprivileged STRT instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
__STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
{
__ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
}
/**
\brief STRT Unprivileged (16 bit)
\details Executes a Unprivileged STRT instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
__STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
{
__ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
}
/**
\brief STRT Unprivileged (32 bit)
\details Executes a Unprivileged STRT instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
__STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
{
__ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
}
#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
__STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat)
{
if ((sat >= 1U) && (sat <= 32U))
{
const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
const int32_t min = -1 - max ;
if (val > max)
{
return max;
}
else if (val < min)
{
return min;
}
}
return val;
}
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
__STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat)
{
if (sat <= 31U)
{
const uint32_t max = ((1U << sat) - 1U);
if (val > (int32_t)max)
{
return max;
}
else if (val < 0)
{
return 0U;
}
}
return (uint32_t)val;
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
/**
\brief Load-Acquire (8 bit)
\details Executes a LDAB instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr)
{
uint32_t result;
__ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
return ((uint8_t) result);
}
/**
\brief Load-Acquire (16 bit)
\details Executes a LDAH instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr)
{
uint32_t result;
__ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
return ((uint16_t) result);
}
/**
\brief Load-Acquire (32 bit)
\details Executes a LDA instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr)
{
uint32_t result;
__ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
return(result);
}
/**
\brief Store-Release (8 bit)
\details Executes a STLB instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
__STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
{
__ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
}
/**
\brief Store-Release (16 bit)
\details Executes a STLH instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
__STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
{
__ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
}
/**
\brief Store-Release (32 bit)
\details Executes a STL instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
__STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr)
{
__ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
}
/**
\brief Load-Acquire Exclusive (8 bit)
\details Executes a LDAB exclusive instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr)
{
uint32_t result;
__ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) );
return ((uint8_t) result);
}
/**
\brief Load-Acquire Exclusive (16 bit)
\details Executes a LDAH exclusive instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr)
{
uint32_t result;
__ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) );
return ((uint16_t) result);
}
/**
\brief Load-Acquire Exclusive (32 bit)
\details Executes a LDA exclusive instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr)
{
uint32_t result;
__ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) );
return(result);
}
/**
\brief Store-Release Exclusive (8 bit)
\details Executes a STLB exclusive instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
{
uint32_t result;
__ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
return(result);
}
/**
\brief Store-Release Exclusive (16 bit)
\details Executes a STLH exclusive instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
{
uint32_t result;
__ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
return(result);
}
/**
\brief Store-Release Exclusive (32 bit)
\details Executes a STL exclusive instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
{
uint32_t result;
__ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) );
return(result);
}
#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
__STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#define __SSAT16(ARG1,ARG2) \
({ \
int32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
#define __USAT16(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
__STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1)
{
uint32_t result;
__ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
return(result);
}
__STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1)
{
uint32_t result;
__ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
return(result);
}
__STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ /* Little endian */
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else /* Big endian */
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ /* Little endian */
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else /* Big endian */
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ /* Little endian */
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else /* Big endian */
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ /* Little endian */
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else /* Big endian */
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2)
{
int32_t result;
__ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2)
{
int32_t result;
__ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
#if 0
#define __PKHBT(ARG1,ARG2,ARG3) \
({ \
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
__ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
__RES; \
})
#define __PKHTB(ARG1,ARG2,ARG3) \
({ \
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
if (ARG3 == 0) \
__ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
else \
__ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
__RES; \
})
#endif
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
__STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
{
int32_t result;
__ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#endif /* (__ARM_FEATURE_DSP == 1) */
/*@} end of group CMSIS_SIMD_intrinsics */
#pragma GCC diagnostic pop
#endif /* __CMSIS_GCC_H */
|