/* Megumin LED display firmware * Copyright (C) 2018 Sebastian Götte * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "adc.h" #include enum adc_channels { VREF_CH, VMEAS_A, VMEAS_B, TEMP_CH, NCH }; volatile uint16_t adc_buf[ADC_BUFSIZE]; volatile struct adc_measurements adc_data = {0}; enum adc_mode adc_mode = ADC_UNINITIALIZED; int adc_oversampling = 0; static void adc_dma_init(int burstlen, bool enable_interrupt); static void adc_timer_init(int psc, int ivl); void adc_configure_scope_mode(uint8_t channel_mask, int sampling_interval_ns) { /* The constant SAMPLE_FAST (0) when passed in as sampling_interval_ns is handled specially in that we turn the ADC to continuous mode to get the highest possible sampling rate. */ /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */ TIM1->CR1 &= ~TIM_CR1_CEN; ADC1->CR &= ~ADC_CR_ADSTART; DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* Enable channel */ /* keep track of current mode in global variable */ adc_mode = ADC_SCOPE; adc_dma_init(sizeof(adc_buf)/sizeof(adc_buf[0]), false); /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */ ADC1->CFGR2 = (2< total conversion time 2.17us*/ ADC1->SMPR = (2<CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_CONT; else /* Trigger from timer 1 Channel 4 */ ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<CHSELR = channel_mask; /* Perform self-calibration */ ADC1->CR |= ADC_CR_ADCAL; while (ADC1->CR & ADC_CR_ADCAL) /* Enable conversion */ ADC1->CR |= ADC_CR_ADSTART; if (sampling_interval_ns == SAMPLE_FAST) return; /* We don't need the timer to trigger in continuous mode. */ /* An ADC conversion takes 1.1667us, so to be sure we don't get data overruns we limit sampling to every 1.5us. Since we don't have a spare PLL to generate the ADC sample clock and re-configuring the system clock just for this would be overkill we round to 250ns increments. The minimum sampling rate is about 60Hz due to timer resolution. */ int cycles = sampling_interval_ns > 1500 ? sampling_interval_ns/250 : 6; if (cycles > 0xffff) cycles = 0xffff; adc_timer_init(12/*250ns/tick*/, cycles); } void adc_configure_monitor_mode(int oversampling) { /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */ TIM1->CR1 &= ~TIM_CR1_CEN; ADC1->CR &= ~ADC_CR_ADSTART; DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* Enable channel */ /* keep track of current mode in global variable */ adc_mode = ADC_MONITOR; adc_oversampling = oversampling; adc_dma_init(NCH, true); /* Setup DMA and triggering: Trigger from Timer 1 Channel 4 */ ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<CFGR2 = (2< total conversion time 2.17us*/ ADC1->SMPR = (2<CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; /* Enable internal voltage reference and temperature sensor */ ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN; /* Perform ADC calibration */ ADC1->CR |= ADC_CR_ADCAL; while (ADC1->CR & ADC_CR_ADCAL) ; /* Enable ADC */ ADC1->CR |= ADC_CR_ADEN; ADC1->CR |= ADC_CR_ADSTART; adc_timer_init(SystemCoreClock/1000000/*1.0us/tick*/, 20/*us*/); } static void adc_dma_init(int burstlen, bool enable_interrupt) { /* Configure DMA 1 Channel 1 to get rid of all the data */ DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR; DMA1_Channel1->CMAR = (unsigned int)&adc_buf; DMA1_Channel1->CNDTR = burstlen; DMA1_Channel1->CCR = (0<CCR |= DMA_CCR_CIRC /* circular mode so we can leave it running indefinitely */ | (1<IFCR |= DMA_IFCR_CGIF1; } DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */ } static void adc_timer_init(int psc, int ivl) { TIM1->BDTR = TIM_BDTR_MOE; /* MOE is needed even though we only "output" a chip-internal signal TODO: Verify this. */ TIM1->CCMR2 = (6<CCER = TIM_CCER_CC4E; /* Enable capture/compare unit 4 connected to ADC */ TIM1->CCR4 = 1; /* Trigger at start of timer cycle */ /* Set prescaler and interval */ TIM1->PSC = psc-1; TIM1->ARR = ivl-1; /* Preload all values */ TIM1->EGR |= TIM_EGR_UG; TIM1->CR1 = TIM_CR1_ARPE; /* And... go! */ TIM1->CR1 |= TIM_CR1_CEN; } void DMA1_Channel1_IRQHandler(void) { /* This interrupt takes either 1.2us or 13us. It can be pre-empted by the more timing-critical UART and LED timer * interrupts. */ static int count = 0; /* oversampling accumulator sample count */ static uint32_t adc_aggregate[NCH] = {0}; /* oversampling accumulator */ /* Clear the interrupt flag */ DMA1->IFCR |= DMA_IFCR_CGIF1; for (int i=0; i>= adc_oversampling; /* This has been copied from the code examples to section 12.9 ADC>"Temperature sensor and internal reference * voltage" in the reference manual with the extension that we actually measure the supply voltage instead of * hardcoding it. This is not strictly necessary since we're running off a bored little LDO but it's free and * the current supply voltage is a nice health value. */ adc_data.adc_vcc_mv = (3300 * VREFINT_CAL)/(adc_aggregate[VREF_CH]); int64_t read = adc_aggregate[TEMP_CH] * 10 * 10000; int64_t vcc = adc_data.adc_vcc_mv; int64_t cal = TS_CAL1 * 10 * 10000; adc_data.adc_temp_celsius_tenths = 300 + ((read/4096 * vcc) - (cal/4096 * 3300))/43000; adc_data.adc_vmeas_a_mv = (adc_aggregate[VMEAS_A]*13300L)/4096 * vcc / 3300; adc_data.adc_vmeas_b_mv = (adc_aggregate[VMEAS_B]*13300L)/4096 * vcc / 3300; count = 0; for (int i=0; i