/* Megumin LED display firmware * Copyright (C) 2018 Sebastian Götte * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "adc.h" #include #include #define DETECTOR_CHANNEL a volatile uint16_t adc_buf[ADC_BUFSIZE]; volatile struct adc_state adc_state = {0}; #define st adc_state volatile struct adc_measurements adc_data; static void adc_dma_init(int burstlen, bool enable_interrupt); static void adc_timer_init(int psc, int ivl); void adc_configure_scope_mode(uint8_t channel_mask, int sampling_interval_ns) { /* The constant SAMPLE_FAST (0) when passed in as sampling_interval_ns is handled specially in that we turn the ADC to continuous mode to get the highest possible sampling rate. */ /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */ TIM1->CR1 &= ~TIM_CR1_CEN; ADC1->CR &= ~ADC_CR_ADSTART; DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* keep track of current mode in global variable */ st.adc_mode = ADC_SCOPE; adc_dma_init(sizeof(adc_buf)/sizeof(adc_buf[0]), true); /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */ ADC1->CFGR2 = (2< total conversion time 2.17us*/ ADC1->SMPR = (2<CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_CONT; else /* Trigger from timer 1 Channel 4 */ ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<CHSELR = channel_mask; /* Perform self-calibration */ ADC1->CR |= ADC_CR_ADCAL; while (ADC1->CR & ADC_CR_ADCAL) ; /* Enable conversion */ ADC1->CR |= ADC_CR_ADEN; ADC1->CR |= ADC_CR_ADSTART; if (sampling_interval_ns == SAMPLE_FAST) return; /* We don't need the timer to trigger in continuous mode. */ /* An ADC conversion takes 1.1667us, so to be sure we don't get data overruns we limit sampling to every 1.5us. Since we don't have a spare PLL to generate the ADC sample clock and re-configuring the system clock just for this would be overkill we round to 250ns increments. The minimum sampling rate is about 60Hz due to timer resolution. */ int cycles = sampling_interval_ns > 1500 ? sampling_interval_ns/250 : 6; if (cycles > 0xffff) cycles = 0xffff; adc_timer_init(12/*250ns/tick*/, cycles); } void adc_configure_monitor_mode(int oversampling, int ivl_us, int mean_aggregate_len) { /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */ TIM1->CR1 &= ~TIM_CR1_CEN; ADC1->CR &= ~ADC_CR_ADSTART; DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* keep track of current mode in global variable */ st.adc_mode = ADC_MONITOR; //st.adc_oversampling = oversampling; //st.ovs_count = 0; for (int i=0; iCFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<CFGR2 = (2< total conversion time 2.17us*/ ADC1->SMPR = (2<CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; /* Enable internal voltage reference and temperature sensor */ ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN; /* Perform ADC calibration */ ADC1->CR |= ADC_CR_ADCAL; while (ADC1->CR & ADC_CR_ADCAL) ; /* Enable ADC */ ADC1->CR |= ADC_CR_ADEN; ADC1->CR |= ADC_CR_ADSTART; adc_timer_init(SystemCoreClock/1000000/*1.0us/tick*/, ivl_us); } static void adc_dma_init(int burstlen, bool enable_interrupt) { /* Configure DMA 1 Channel 1 to get rid of all the data */ DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR; DMA1_Channel1->CMAR = (unsigned int)&adc_buf; DMA1_Channel1->CNDTR = burstlen; DMA1_Channel1->CCR = (0<CCR |= DMA_CCR_CIRC /* circular mode so we can leave it running indefinitely */ | (1<IFCR |= DMA_IFCR_CGIF1; } DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */ } static void adc_timer_init(int psc, int ivl) { TIM1->BDTR = TIM_BDTR_MOE; /* MOE is needed even though we only "output" a chip-internal signal TODO: Verify this. */ TIM1->CCMR2 = (6<CCER = TIM_CCER_CC4E; /* Enable capture/compare unit 4 connected to ADC */ TIM1->CCR4 = 1; /* Trigger at start of timer cycle */ /* Set prescaler and interval */ TIM1->PSC = psc-1; TIM1->ARR = ivl-1; /* Preload all values */ TIM1->EGR |= TIM_EGR_UG; TIM1->CR1 = TIM_CR1_ARPE; /* And... go! */ TIM1->CR1 |= TIM_CR1_CEN; } /* This acts as a no-op that provides a convenient point to set a breakpoint for the debug scope logic */ static void gdb_dump(void) { } int payload_len[PKT_TYPE_MAX] = { [PKT_TYPE_RESERVED] = 0, [PKT_TYPE_SET_OUTPUTS_BINARY] = 1, [PKT_TYPE_SET_GLOBAL_BRIGHTNESS] = 1, [PKT_TYPE_SET_OUTPUTS] = 8 }; void handle_command(int command, uint8_t *args) { switch (command) { case PKT_TYPE_SET_OUTPUTS_BINARY: set_outputs_binary(args[0], st.receiver.global_brightness); break; case PKT_TYPE_SET_GLOBAL_BRIGHTNESS: st.receiver.global_brightness = args[0]; break; case PKT_TYPE_SET_OUTPUTS: set_outputs(args); break; } } void receive_symbol(int symbol) { if (symbol == -K28_1) { /* Comma/frame delimiter */ st.receiver.rxpos = 0; /* Fall through and return and just ignore incomplete packets */ } else if (symbol == -DECODING_ERROR) { st.receiver.rxpos = -1; } else if (symbol < 0) { /* Unknown comma symbol or error */ st.receiver.rxpos = -1; } else if (st.receiver.rxpos == -1) { return; } else if (st.receiver.rxpos == 0) { /* First data symbol, and not an error or comma symbol */ st.receiver.packet_type = symbol & ~PKT_TYPE_BULK_FLAG; if (st.receiver.packet_type >= PKT_TYPE_MAX) { st.receiver.rxpos = -1; return; } st.receiver.is_bulk = symbol & PKT_TYPE_BULK_FLAG; st.receiver.offset = (st.receiver.is_bulk) ? st.receiver.address*payload_len[st.receiver.packet_type]+1 : 2; st.receiver.rxpos++; } else if (!st.receiver.is_bulk && st.receiver.rxpos == 1) { st.receiver.rxpos = (symbol == st.receiver.address) ? 2 : -1; } else { st.receiver.argbuf[st.receiver.rxpos - st.receiver.offset] = symbol; st.receiver.rxpos++; if (st.receiver.rxpos - st.receiver.offset == payload_len[st.receiver.packet_type]) { handle_command(st.receiver.packet_type, (uint8_t *)st.receiver.argbuf); st.receiver.rxpos = -1; } } } void receive_bit(int bit) { int symbol = xfr_8b10b_feed_bit((struct state_8b10b_dec *)&st.detector.rx8b10b, bit); if (symbol == -K28_1) st.detector.sync = 1; if (symbol == -DECODING_IN_PROGRESS) return; if (symbol == -DECODING_ERROR) st.detector.sync = 0; /* Fall through so we also pass the error to receive_symbol */ receive_symbol(symbol); /* Debug scope logic */ static int debug_buf_pos = 0; if (st.detector.sync && symbol != -DECODING_IN_PROGRESS) { if (debug_buf_pos < NCH) { debug_buf_pos = NCH; } else { adc_buf[debug_buf_pos++] = symbol; if (debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) { debug_buf_pos = 0; st.detector.sync = 0; gdb_dump(); for (int i=0; iVAL; /* Clear the interrupt flag */ DMA1->IFCR |= DMA_IFCR_CGIF1; if (st.adc_mode == ADC_SCOPE) return; /* This has been copied from the code examples to section 12.9 ADC>"Temperature sensor and internal reference * voltage" in the reference manual with the extension that we actually measure the supply voltage instead of * hardcoding it. This is not strictly necessary since we're running off a bored little LDO but it's free and * the current supply voltage is a nice health value. */ // FIXME DEBUG adc_data.adc_vcc_mv = (3300 * VREFINT_CAL)/(st.adc_aggregate[VREF_CH]); int64_t vcc = 3300; /* FIXME debug int64_t vcc = adc_data.adc_vcc_mv; int64_t read = st.adc_aggregate[TEMP_CH] * 10 * 10000; int64_t cal = TS_CAL1 * 10 * 10000; adc_data.adc_temp_celsius_tenths = 300 + ((read/4096 * vcc) - (cal/4096 * 3300))/43000; */ const long vmeas_r_total = VMEAS_R_HIGH + VMEAS_R_LOW; //int a = adc_data.adc_vmeas_a_mv = (st.adc_aggregate[VMEAS_A]*(vmeas_r_total * vcc / VMEAS_R_LOW)) >> 12; int a = adc_data.adc_vmeas_a_mv = (adc_buf[VMEAS_A]*13300) >> 12; int new_bit = st.detector.bit; int diff = a-5500; if (diff < - st.detector.hysteresis_mv/2) new_bit = 0; else if (diff > st.detector.hysteresis_mv/2) new_bit = 1; if (new_bit != st.detector.bit) { st.detector.bit = new_bit; st.detector.len_ctr = 0; st.detector.committed_len_ctr = st.detector.base_interval_cycles>>1; } else if (st.detector.len_ctr >= st.detector.committed_len_ctr) { st.detector.committed_len_ctr += st.detector.base_interval_cycles; receive_bit(st.detector.bit); } st.detector.len_ctr++; /* ISR timing measurement for debugging */ int end = SysTick->VAL; int tdiff = start - end; if (tdiff < 0) tdiff += SysTick->LOAD; st.detector.dma_isr_duration = tdiff; }