/* Megumin LED display firmware * Copyright (C) 2018 Sebastian Götte * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "adc.h" #include #include #define DETECTOR_CHANNEL a volatile uint16_t adc_buf[ADC_BUFSIZE]; volatile struct adc_state adc_state = {0}; #define st adc_state volatile struct adc_measurements adc_data; static void adc_dma_init(int burstlen, bool enable_interrupt); static void adc_timer_init(int psc, int ivl); void adc_configure_scope_mode(uint8_t channel_mask, int sampling_interval_ns) { /* The constant SAMPLE_FAST (0) when passed in as sampling_interval_ns is handled specially in that we turn the ADC to continuous mode to get the highest possible sampling rate. */ /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */ TIM1->CR1 &= ~TIM_CR1_CEN; ADC1->CR &= ~ADC_CR_ADSTART; DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* keep track of current mode in global variable */ st.adc_mode = ADC_SCOPE; adc_dma_init(sizeof(adc_buf)/sizeof(adc_buf[0]), true); /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */ ADC1->CFGR2 = (2< total conversion time 2.17us*/ ADC1->SMPR = (2<CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_CONT; else /* Trigger from timer 1 Channel 4 */ ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<CHSELR = channel_mask; /* Perform self-calibration */ ADC1->CR |= ADC_CR_ADCAL; while (ADC1->CR & ADC_CR_ADCAL) ; /* Enable conversion */ ADC1->CR |= ADC_CR_ADEN; ADC1->CR |= ADC_CR_ADSTART; if (sampling_interval_ns == SAMPLE_FAST) return; /* We don't need the timer to trigger in continuous mode. */ /* An ADC conversion takes 1.1667us, so to be sure we don't get data overruns we limit sampling to every 1.5us. Since we don't have a spare PLL to generate the ADC sample clock and re-configuring the system clock just for this would be overkill we round to 250ns increments. The minimum sampling rate is about 60Hz due to timer resolution. */ int cycles = sampling_interval_ns > 1500 ? sampling_interval_ns/250 : 6; if (cycles > 0xffff) cycles = 0xffff; adc_timer_init(12/*250ns/tick*/, cycles); } void adc_configure_monitor_mode(int oversampling, int ivl_us, int mean_aggregate_len) { /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */ TIM1->CR1 &= ~TIM_CR1_CEN; ADC1->CR &= ~ADC_CR_ADSTART; DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* keep track of current mode in global variable */ st.adc_mode = ADC_MONITOR; st.adc_oversampling = oversampling; st.ovs_count = 0; for (int i=0; iCFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<CFGR2 = (2< total conversion time 2.17us*/ ADC1->SMPR = (2<CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; /* Enable internal voltage reference and temperature sensor */ ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN; /* Perform ADC calibration */ ADC1->CR |= ADC_CR_ADCAL; while (ADC1->CR & ADC_CR_ADCAL) ; /* Enable ADC */ ADC1->CR |= ADC_CR_ADEN; ADC1->CR |= ADC_CR_ADSTART; adc_timer_init(SystemCoreClock/1000000/*1.0us/tick*/, ivl_us); } static void adc_dma_init(int burstlen, bool enable_interrupt) { /* Configure DMA 1 Channel 1 to get rid of all the data */ DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR; DMA1_Channel1->CMAR = (unsigned int)&adc_buf; DMA1_Channel1->CNDTR = burstlen; DMA1_Channel1->CCR = (0<CCR |= DMA_CCR_CIRC /* circular mode so we can leave it running indefinitely */ | (1<IFCR |= DMA_IFCR_CGIF1; } DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */ } static void adc_timer_init(int psc, int ivl) { TIM1->BDTR = TIM_BDTR_MOE; /* MOE is needed even though we only "output" a chip-internal signal TODO: Verify this. */ TIM1->CCMR2 = (6<CCER = TIM_CCER_CC4E; /* Enable capture/compare unit 4 connected to ADC */ TIM1->CCR4 = 1; /* Trigger at start of timer cycle */ /* Set prescaler and interval */ TIM1->PSC = psc-1; TIM1->ARR = ivl-1; /* Preload all values */ TIM1->EGR |= TIM_EGR_UG; TIM1->CR1 = TIM_CR1_ARPE; /* And... go! */ TIM1->CR1 |= TIM_CR1_CEN; } /* FIXME DEBUG */ static void gdb_dump(void) { } void DMA1_Channel1_IRQHandler(void) { int start = SysTick->VAL; static int debug_buf_pos = 0; /* Clear the interrupt flag */ DMA1->IFCR |= DMA_IFCR_CGIF1; if (st.adc_mode == ADC_SCOPE) return; //for (int i=0; i>= st.adc_oversampling; */ /* This has been copied from the code examples to section 12.9 ADC>"Temperature sensor and internal reference * voltage" in the reference manual with the extension that we actually measure the supply voltage instead of * hardcoding it. This is not strictly necessary since we're running off a bored little LDO but it's free and * the current supply voltage is a nice health value. */ // FIXME DEBUG adc_data.adc_vcc_mv = (3300 * VREFINT_CAL)/(st.adc_aggregate[VREF_CH]); int64_t vcc = 3300; /* FIXME debug int64_t vcc = adc_data.adc_vcc_mv; int64_t read = st.adc_aggregate[TEMP_CH] * 10 * 10000; int64_t cal = TS_CAL1 * 10 * 10000; adc_data.adc_temp_celsius_tenths = 300 + ((read/4096 * vcc) - (cal/4096 * 3300))/43000; */ const long vmeas_r_total = VMEAS_R_HIGH + VMEAS_R_LOW; //int a = adc_data.adc_vmeas_a_mv = (st.adc_aggregate[VMEAS_A]*(vmeas_r_total * vcc / VMEAS_R_LOW)) >> 12; int a = adc_data.adc_vmeas_a_mv = (adc_buf[VMEAS_A]*13300) >> 12; //FIXME debug int b = adc_data.adc_vmeas_b_mv = (st.adc_aggregate[VMEAS_B]*vmeas_r_total)/4096 * vcc / VMEAS_R_LOW; /* FIXME debug st.mean_aggregator[0] += a; st.mean_aggregator[1] += b; st.mean_aggregator[2] += abs(b-a); if (++st.mean_aggregate_ctr == st.mean_aggregate_len) { adc_data.adc_mean_a_mv = st.mean_aggregator[0] / st.mean_aggregate_len; adc_data.adc_mean_b_mv = st.mean_aggregator[1] / st.mean_aggregate_len; adc_data.adc_mean_diff_mv = st.mean_aggregator[2] / st.mean_aggregate_len; st.mean_aggregate_ctr = 0; st.mean_aggregator[0] = st.mean_aggregator[1] = st.mean_aggregator[2] = 0; } */ //if (st.detector.debounce_ctr == 0) { int old_bit = st.detector.bit; int new_bit = old_bit; //FIXME debug int diff = (int)b - (int)a; int diff = a-5500; /* if (debug_buf_pos < NCH || debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) { debug_buf_pos = NCH; gdb_dump(); } adc_buf[debug_buf_pos++] = diff; */ if (diff < - st.detector.hysteresis_mv/2) new_bit = 0; else if (diff > st.detector.hysteresis_mv/2) new_bit = 1; /* if (debug_buf_pos < NCH || debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) { debug_buf_pos = NCH; gdb_dump(); } adc_buf[debug_buf_pos++] = new_bit; */ if (new_bit != old_bit) { st.detector.bit = new_bit; //st.detector.debounce_ctr = st.detector.debounce_cycles; st.detector.len_ctr = 0; st.detector.committed_len_ctr = st.detector.base_interval_cycles>>1; } //} else { // st.detector.debounce_ctr--; //} /* if (debug_buf_pos < NCH || debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) { debug_buf_pos = NCH; gdb_dump(); } adc_buf[debug_buf_pos++] = st.detector.len_ctr; adc_buf[debug_buf_pos++] = st.detector.committed_len_ctr; adc_buf[debug_buf_pos++] = diff; int foo = 0; */ if (st.detector.len_ctr >= st.detector.committed_len_ctr) { /* if (debug_buf_pos < NCH || debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) { debug_buf_pos = NCH; gdb_dump(); } adc_buf[debug_buf_pos++] = st.detector.bit; int foo = st.detector.symbol; if (foo < 0 && foo != K28_1) foo = 0; adc_buf[debug_buf_pos++] = foo; */ if (st.detector.symbol != -DECODING_IN_PROGRESS) { static int trig = 0; if (st.detector.symbol == -K28_1) { if (trig == 10) { gdb_dump(); for (int i=0; i= sizeof(adc_buf)/sizeof(adc_buf[0])) { debug_buf_pos = 0; } if (debug_buf_pos >= NCH) { adc_buf[debug_buf_pos++] = st.detector.symbol; } } /* if (debug_buf_pos < NCH || debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) { debug_buf_pos = NCH; gdb_dump(); } adc_buf[debug_buf_pos++] = st.detector.bit; */ //foo = st.detector.bit ? 1 : -1; st.detector.committed_len_ctr += st.detector.base_interval_cycles; st.detector.symbol = xfr_8b10b_feed_bit((struct state_8b10b_dec *)&st.detector.rx8b10b, st.detector.bit); /* if (st.detector.symbol != -DECODING_IN_PROGRESS) { if (debug_buf_pos < NCH || debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) { debug_buf_pos = NCH; gdb_dump(); } adc_buf[debug_buf_pos++] = st.detector.symbol; adc_buf[debug_buf_pos++] = st.detector.symbol == -DECODING_ERROR; adc_buf[debug_buf_pos++] = st.detector.symbol == -K28_1; adc_buf[debug_buf_pos++] = 0; } */ } //adc_buf[debug_buf_pos++] = foo; st.detector.len_ctr++; st.ovs_count = 0; for (int i=0; iVAL; /* if (debug_buf_pos < NCH || debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) { debug_buf_pos = NCH; gdb_dump(); } int tdiff = start - end; if (tdiff < 0) tdiff += SysTick->LOAD; adc_buf[debug_buf_pos++] = tdiff; */ }