aboutsummaryrefslogtreecommitdiff
path: root/fw/adc.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/adc.c')
-rw-r--r--fw/adc.c69
1 files changed, 38 insertions, 31 deletions
diff --git a/fw/adc.c b/fw/adc.c
index 0748586..934a239 100644
--- a/fw/adc.c
+++ b/fw/adc.c
@@ -18,24 +18,18 @@
#include "adc.h"
#include <stdbool.h>
+#include <stdlib.h>
-enum adc_channels {
- VREF_CH,
- VMEAS_A,
- VMEAS_B,
- TEMP_CH,
- NCH
-};
-
volatile uint16_t adc_buf[ADC_BUFSIZE];
-volatile struct adc_measurements adc_data = {0};
-enum adc_mode adc_mode = ADC_UNINITIALIZED;
-int adc_oversampling = 0;
+volatile struct adc_state adc_state = {0};
+#define st adc_state
+volatile struct adc_measurements adc_data;
static void adc_dma_init(int burstlen, bool enable_interrupt);
static void adc_timer_init(int psc, int ivl);
+
void adc_configure_scope_mode(uint8_t channel_mask, int sampling_interval_ns) {
/* The constant SAMPLE_FAST (0) when passed in as sampling_interval_ns is handled specially in that we turn the ADC
to continuous mode to get the highest possible sampling rate. */
@@ -46,7 +40,7 @@ void adc_configure_scope_mode(uint8_t channel_mask, int sampling_interval_ns) {
DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* Enable channel */
/* keep track of current mode in global variable */
- adc_mode = ADC_SCOPE;
+ st.adc_mode = ADC_SCOPE;
adc_dma_init(sizeof(adc_buf)/sizeof(adc_buf[0]), false);
@@ -79,15 +73,21 @@ void adc_configure_scope_mode(uint8_t channel_mask, int sampling_interval_ns) {
adc_timer_init(12/*250ns/tick*/, cycles);
}
-void adc_configure_monitor_mode(int oversampling) {
+void adc_configure_monitor_mode(int oversampling, int ivl_us, int mean_aggregate_len) {
/* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */
TIM1->CR1 &= ~TIM_CR1_CEN;
ADC1->CR &= ~ADC_CR_ADSTART;
DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* Enable channel */
/* keep track of current mode in global variable */
- adc_mode = ADC_MONITOR;
- adc_oversampling = oversampling;
+ st.adc_mode = ADC_MONITOR;
+
+ st.adc_oversampling = oversampling;
+ st.ovs_count = 0;
+ for (int i=0; i<NCH; i++)
+ st.adc_aggregate[i] = 0;
+ st.mean_aggregator[0] = st.mean_aggregator[1] = st.mean_aggregator[2] = 0;
+ st.mean_aggregate_ctr = 0;
adc_dma_init(NCH, true);
@@ -109,7 +109,7 @@ void adc_configure_monitor_mode(int oversampling) {
ADC1->CR |= ADC_CR_ADEN;
ADC1->CR |= ADC_CR_ADSTART;
- adc_timer_init(SystemCoreClock/1000000/*1.0us/tick*/, 20/*us*/);
+ adc_timer_init(SystemCoreClock/1000000/*1.0us/tick*/, ivl_us);
}
static void adc_dma_init(int burstlen, bool enable_interrupt) {
@@ -150,42 +150,49 @@ static void adc_timer_init(int psc, int ivl) {
TIM1->CR1 = TIM_CR1_ARPE;
/* And... go! */
TIM1->CR1 |= TIM_CR1_CEN;
-
}
void DMA1_Channel1_IRQHandler(void) {
- /* This interrupt takes either 1.2us or 13us. It can be pre-empted by the more timing-critical UART and LED timer
- * interrupts. */
- static int count = 0; /* oversampling accumulator sample count */
- static uint32_t adc_aggregate[NCH] = {0}; /* oversampling accumulator */
-
/* Clear the interrupt flag */
DMA1->IFCR |= DMA_IFCR_CGIF1;
for (int i=0; i<NCH; i++)
- adc_aggregate[i] += adc_buf[i];
+ st.adc_aggregate[i] += adc_buf[i];
- if (++count == (1<<adc_oversampling)) {
+ if (++st.ovs_count == (1<<st.adc_oversampling)) {
for (int i=0; i<NCH; i++)
- adc_aggregate[i] >>= adc_oversampling;
+ st.adc_aggregate[i] >>= st.adc_oversampling;
/* This has been copied from the code examples to section 12.9 ADC>"Temperature sensor and internal reference
* voltage" in the reference manual with the extension that we actually measure the supply voltage instead of
* hardcoding it. This is not strictly necessary since we're running off a bored little LDO but it's free and
* the current supply voltage is a nice health value.
*/
- adc_data.adc_vcc_mv = (3300 * VREFINT_CAL)/(adc_aggregate[VREF_CH]);
+ adc_data.adc_vcc_mv = (3300 * VREFINT_CAL)/(st.adc_aggregate[VREF_CH]);
- int64_t read = adc_aggregate[TEMP_CH] * 10 * 10000;
+ int64_t read = st.adc_aggregate[TEMP_CH] * 10 * 10000;
int64_t vcc = adc_data.adc_vcc_mv;
int64_t cal = TS_CAL1 * 10 * 10000;
adc_data.adc_temp_celsius_tenths = 300 + ((read/4096 * vcc) - (cal/4096 * 3300))/43000;
- adc_data.adc_vmeas_a_mv = (adc_aggregate[VMEAS_A]*13300L)/4096 * vcc / 3300;
- adc_data.adc_vmeas_b_mv = (adc_aggregate[VMEAS_B]*13300L)/4096 * vcc / 3300;
+ const long vmeas_r_total = VMEAS_R_HIGH + VMEAS_R_LOW;
+ int a = adc_data.adc_vmeas_a_mv = (st.adc_aggregate[VMEAS_A]*vmeas_r_total)/4096 * vcc / VMEAS_R_LOW;
+ int b = adc_data.adc_vmeas_b_mv = (st.adc_aggregate[VMEAS_B]*vmeas_r_total)/4096 * vcc / VMEAS_R_LOW;
+
+ st.mean_aggregator[0] += a;
+ st.mean_aggregator[1] += b;
+ st.mean_aggregator[2] += abs(b-a);
+ if (++st.mean_aggregate_ctr == st.mean_aggregate_len) {
+ adc_data.adc_mean_a_mv = st.mean_aggregator[0] / st.mean_aggregate_len;
+ adc_data.adc_mean_b_mv = st.mean_aggregator[1] / st.mean_aggregate_len;
+ adc_data.adc_mean_diff_mv = st.mean_aggregator[2] / st.mean_aggregate_len;
+
+ st.mean_aggregate_ctr = 0;
+ st.mean_aggregator[0] = st.mean_aggregator[1] = st.mean_aggregator[2] = 0;
+ }
- count = 0;
+ st.ovs_count = 0;
for (int i=0; i<NCH; i++)
- adc_aggregate[i] = 0;
+ st.adc_aggregate[i] = 0;
}
}