aboutsummaryrefslogtreecommitdiff
path: root/fw/adc.c
diff options
context:
space:
mode:
Diffstat (limited to 'fw/adc.c')
-rw-r--r--fw/adc.c149
1 files changed, 132 insertions, 17 deletions
diff --git a/fw/adc.c b/fw/adc.c
index 9deeb72..0748586 100644
--- a/fw/adc.c
+++ b/fw/adc.c
@@ -17,7 +17,8 @@
#include "adc.h"
-volatile struct adc_measurements adc_data = {0};
+#include <stdbool.h>
+
enum adc_channels {
VREF_CH,
@@ -26,22 +27,80 @@ enum adc_channels {
TEMP_CH,
NCH
};
-static volatile uint16_t adc_buf[1024];
-
-void adc_init(void) {
- /* The ADC is used for temperature measurement. To compute the temperature from an ADC reading of the internal
- * temperature sensor, the supply voltage must also be measured. Thus we are using two channels.
- *
- * The ADC is triggered by compare channel 4 of timer 1. The trigger is set to falling edge to trigger on compare
- * match, not overflow.
- */
- ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos) | ADC_CFGR1_CONT;
+
+volatile uint16_t adc_buf[ADC_BUFSIZE];
+volatile struct adc_measurements adc_data = {0};
+enum adc_mode adc_mode = ADC_UNINITIALIZED;
+int adc_oversampling = 0;
+
+static void adc_dma_init(int burstlen, bool enable_interrupt);
+static void adc_timer_init(int psc, int ivl);
+
+void adc_configure_scope_mode(uint8_t channel_mask, int sampling_interval_ns) {
+ /* The constant SAMPLE_FAST (0) when passed in as sampling_interval_ns is handled specially in that we turn the ADC
+ to continuous mode to get the highest possible sampling rate. */
+
+ /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */
+ TIM1->CR1 &= ~TIM_CR1_CEN;
+ ADC1->CR &= ~ADC_CR_ADSTART;
+ DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* Enable channel */
+
+ /* keep track of current mode in global variable */
+ adc_mode = ADC_SCOPE;
+
+ adc_dma_init(sizeof(adc_buf)/sizeof(adc_buf[0]), false);
+
/* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */
ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */
/* Sampling time 13.5 ADC clock cycles -> total conversion time 2.17us*/
ADC1->SMPR = (2<<ADC_SMPR_SMP_Pos);
- ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1;
+ /* Setup DMA and triggering */
+ if (sampling_interval_ns == SAMPLE_FAST) /* Continuous trigger */
+ ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_CONT;
+ else /* Trigger from timer 1 Channel 4 */
+ ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos);
+ ADC1->CHSELR = channel_mask;
+ /* Perform self-calibration */
+ ADC1->CR |= ADC_CR_ADCAL;
+ while (ADC1->CR & ADC_CR_ADCAL)
+ /* Enable conversion */
+ ADC1->CR |= ADC_CR_ADSTART;
+
+ if (sampling_interval_ns == SAMPLE_FAST)
+ return; /* We don't need the timer to trigger in continuous mode. */
+
+ /* An ADC conversion takes 1.1667us, so to be sure we don't get data overruns we limit sampling to every 1.5us.
+ Since we don't have a spare PLL to generate the ADC sample clock and re-configuring the system clock just for this
+ would be overkill we round to 250ns increments. The minimum sampling rate is about 60Hz due to timer resolution. */
+ int cycles = sampling_interval_ns > 1500 ? sampling_interval_ns/250 : 6;
+ if (cycles > 0xffff)
+ cycles = 0xffff;
+ adc_timer_init(12/*250ns/tick*/, cycles);
+}
+
+void adc_configure_monitor_mode(int oversampling) {
+ /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */
+ TIM1->CR1 &= ~TIM_CR1_CEN;
+ ADC1->CR &= ~ADC_CR_ADSTART;
+ DMA1_Channel1->CCR &= ~DMA_CCR_EN; /* Enable channel */
+
+ /* keep track of current mode in global variable */
+ adc_mode = ADC_MONITOR;
+ adc_oversampling = oversampling;
+
+ adc_dma_init(NCH, true);
+
+ /* Setup DMA and triggering: Trigger from Timer 1 Channel 4 */
+ ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos);
+ /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */
+ ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */
+ /* Sampling time 13.5 ADC clock cycles -> total conversion time 2.17us*/
+ ADC1->SMPR = (2<<ADC_SMPR_SMP_Pos);
+ /* Internal VCC and temperature sensor channels */
+ ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17;
+ /* Enable internal voltage reference and temperature sensor */
+ ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN;
/* Perform ADC calibration */
ADC1->CR |= ADC_CR_ADCAL;
while (ADC1->CR & ADC_CR_ADCAL)
@@ -50,27 +109,83 @@ void adc_init(void) {
ADC1->CR |= ADC_CR_ADEN;
ADC1->CR |= ADC_CR_ADSTART;
+ adc_timer_init(SystemCoreClock/1000000/*1.0us/tick*/, 20/*us*/);
+}
+
+static void adc_dma_init(int burstlen, bool enable_interrupt) {
/* Configure DMA 1 Channel 1 to get rid of all the data */
DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR;
DMA1_Channel1->CMAR = (unsigned int)&adc_buf;
- DMA1_Channel1->CNDTR = sizeof(adc_buf)/sizeof(adc_buf[0]);
+ DMA1_Channel1->CNDTR = burstlen;
DMA1_Channel1->CCR = (0<<DMA_CCR_PL_Pos);
DMA1_Channel1->CCR |=
DMA_CCR_CIRC /* circular mode so we can leave it running indefinitely */
| (1<<DMA_CCR_MSIZE_Pos) /* 16 bit */
| (1<<DMA_CCR_PSIZE_Pos) /* 16 bit */
| DMA_CCR_MINC
- | DMA_CCR_TCIE; /* Enable transfer complete interrupt. */
+ | (enable_interrupt ? DMA_CCR_TCIE : 0); /* Enable transfer complete interrupt. */
+
+ if (enable_interrupt) {
+ /* triggered on transfer completion. We use this to process the ADC data */
+ NVIC_EnableIRQ(DMA1_Channel1_IRQn);
+ NVIC_SetPriority(DMA1_Channel1_IRQn, 3<<5);
+ } else {
+ NVIC_DisableIRQ(DMA1_Channel1_IRQn);
+ DMA1->IFCR |= DMA_IFCR_CGIF1;
+ }
+
DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */
+}
+
+static void adc_timer_init(int psc, int ivl) {
+ TIM1->BDTR = TIM_BDTR_MOE; /* MOE is needed even though we only "output" a chip-internal signal TODO: Verify this. */
+ TIM1->CCMR2 = (6<<TIM_CCMR2_OC4M_Pos); /* PWM Mode 1 to get a clean trigger signal */
+ TIM1->CCER = TIM_CCER_CC4E; /* Enable capture/compare unit 4 connected to ADC */
+ TIM1->CCR4 = 1; /* Trigger at start of timer cycle */
+ /* Set prescaler and interval */
+ TIM1->PSC = psc-1;
+ TIM1->ARR = ivl-1;
+ /* Preload all values */
+ TIM1->EGR |= TIM_EGR_UG;
+ TIM1->CR1 = TIM_CR1_ARPE;
+ /* And... go! */
+ TIM1->CR1 |= TIM_CR1_CEN;
- /* triggered on transfer completion. We use this to process the ADC data */
- NVIC_EnableIRQ(DMA1_Channel1_IRQn);
- NVIC_SetPriority(DMA1_Channel1_IRQn, 3<<5);
}
void DMA1_Channel1_IRQHandler(void) {
+ /* This interrupt takes either 1.2us or 13us. It can be pre-empted by the more timing-critical UART and LED timer
+ * interrupts. */
+ static int count = 0; /* oversampling accumulator sample count */
+ static uint32_t adc_aggregate[NCH] = {0}; /* oversampling accumulator */
+
/* Clear the interrupt flag */
DMA1->IFCR |= DMA_IFCR_CGIF1;
+ for (int i=0; i<NCH; i++)
+ adc_aggregate[i] += adc_buf[i];
+
+ if (++count == (1<<adc_oversampling)) {
+ for (int i=0; i<NCH; i++)
+ adc_aggregate[i] >>= adc_oversampling;
+ /* This has been copied from the code examples to section 12.9 ADC>"Temperature sensor and internal reference
+ * voltage" in the reference manual with the extension that we actually measure the supply voltage instead of
+ * hardcoding it. This is not strictly necessary since we're running off a bored little LDO but it's free and
+ * the current supply voltage is a nice health value.
+ */
+ adc_data.adc_vcc_mv = (3300 * VREFINT_CAL)/(adc_aggregate[VREF_CH]);
+
+ int64_t read = adc_aggregate[TEMP_CH] * 10 * 10000;
+ int64_t vcc = adc_data.adc_vcc_mv;
+ int64_t cal = TS_CAL1 * 10 * 10000;
+ adc_data.adc_temp_celsius_tenths = 300 + ((read/4096 * vcc) - (cal/4096 * 3300))/43000;
+
+ adc_data.adc_vmeas_a_mv = (adc_aggregate[VMEAS_A]*13300L)/4096 * vcc / 3300;
+ adc_data.adc_vmeas_b_mv = (adc_aggregate[VMEAS_B]*13300L)/4096 * vcc / 3300;
+
+ count = 0;
+ for (int i=0; i<NCH; i++)
+ adc_aggregate[i] = 0;
+ }
}