aboutsummaryrefslogtreecommitdiff
path: root/center_fw/src/adc.c
diff options
context:
space:
mode:
Diffstat (limited to 'center_fw/src/adc.c')
-rw-r--r--center_fw/src/adc.c305
1 files changed, 0 insertions, 305 deletions
diff --git a/center_fw/src/adc.c b/center_fw/src/adc.c
deleted file mode 100644
index 0cf70d1..0000000
--- a/center_fw/src/adc.c
+++ /dev/null
@@ -1,305 +0,0 @@
-/* Megumin LED display firmware
- * Copyright (C) 2018 Sebastian Götte <code@jaseg.net>
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#include "adc.h"
-
-#include <stdbool.h>
-#include <stdlib.h>
-
-#define DETECTOR_CHANNEL a
-
-volatile uint16_t adc_buf[ADC_BUFSIZE];
-volatile struct adc_state adc_state = {0};
-#define st adc_state
-volatile struct adc_measurements adc_data;
-
-static void adc_dma_init(int burstlen, bool enable_interrupt);
-static void adc_timer_init(int psc, int ivl);
-
-
-/* Mode that can be used for debugging */
-void adc_configure_scope_mode(uint8_t channel_mask, int sampling_interval_ns) {
- /* The constant SAMPLE_FAST (0) when passed in as sampling_interval_ns is handled specially in that we turn the ADC
- to continuous mode to get the highest possible sampling rate. */
-
- /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */
- TIM1->CR1 &= ~TIM_CR1_CEN;
- ADC1->CR &= ~ADC_CR_ADSTART;
- DMA1_Channel1->CCR &= ~DMA_CCR_EN;
-
- /* keep track of current mode in global variable */
- st.adc_mode = ADC_SCOPE;
-
- adc_dma_init(sizeof(adc_buf)/sizeof(adc_buf[0]), true);
-
- /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */
- ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */
- /* Sampling time 13.5 ADC clock cycles -> total conversion time 2.17us*/
- ADC1->SMPR = (2<<ADC_SMPR_SMP_Pos);
-
- /* Setup DMA and triggering */
- if (sampling_interval_ns == SAMPLE_FAST) /* Continuous trigger */
- ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_CONT;
- else /* Trigger from timer 1 Channel 4 */
- ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos);
- ADC1->CHSELR = channel_mask;
- /* Perform self-calibration */
- ADC1->CR |= ADC_CR_ADCAL;
- while (ADC1->CR & ADC_CR_ADCAL)
- ;
- /* Enable conversion */
- ADC1->CR |= ADC_CR_ADEN;
- ADC1->CR |= ADC_CR_ADSTART;
-
- if (sampling_interval_ns == SAMPLE_FAST)
- return; /* We don't need the timer to trigger in continuous mode. */
-
- /* An ADC conversion takes 1.1667us, so to be sure we don't get data overruns we limit sampling to every 1.5us.
- Since we don't have a spare PLL to generate the ADC sample clock and re-configuring the system clock just for this
- would be overkill we round to 250ns increments. The minimum sampling rate is about 60Hz due to timer resolution. */
- int cycles = sampling_interval_ns > 1500 ? sampling_interval_ns/250 : 6;
- if (cycles > 0xffff)
- cycles = 0xffff;
- adc_timer_init(12/*250ns/tick*/, cycles);
-}
-
-/* FIXME figure out the proper place to configure this. */
-#define ADC_TIMER_INTERVAL_US 20
-
-/* Regular operation receiver mode. */
-void adc_configure_monitor_mode(const struct command_if_def *cmd_if) {
- /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */
- TIM1->CR1 &= ~TIM_CR1_CEN;
- ADC1->CR &= ~ADC_CR_ADSTART;
- DMA1_Channel1->CCR &= ~DMA_CCR_EN;
-
- /* keep track of current mode in global variable */
- st.adc_mode = ADC_MONITOR;
-
- for (int i=0; i<NCH; i++)
- st.adc_aggregate[i] = 0;
- st.mean_aggregator[0] = st.mean_aggregator[1] = st.mean_aggregator[2] = 0;
- st.mean_aggregate_ctr = 0;
-
- st.det_st.hysteresis_mv = 6000;
- /* base_cycles * the ADC timer interval (20us) must match the driver's AC period. */
- st.det_st.base_interval_cycles = 40; /* 40 * 20us = 800us/1.25kHz */
-
- st.det_st.sync = 0;
- st.det_st.last_bit = 0;
- st.det_st.committed_len_ctr = st.det_st.len_ctr = 0;
- xfr_8b10b_reset((struct state_8b10b_dec *)&st.det_st.rx8b10b);
- reset_receiver((struct proto_rx_st *)&st.det_st.rx_st, cmd_if);
-
- adc_dma_init(NCH, true);
-
- /* Setup DMA and triggering: Trigger from Timer 1 Channel 4 */
- ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos);
- /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */
- ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */
- /* Sampling time 13.5 ADC clock cycles -> total conversion time 2.17us*/
- ADC1->SMPR = (2<<ADC_SMPR_SMP_Pos);
- /* Internal VCC and temperature sensor channels */
- ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17;
- /* Enable internal voltage reference and temperature sensor */
- ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN;
- /* Perform ADC calibration */
- ADC1->CR |= ADC_CR_ADCAL;
- while (ADC1->CR & ADC_CR_ADCAL)
- ;
- /* Enable ADC */
- ADC1->CR |= ADC_CR_ADEN;
- ADC1->CR |= ADC_CR_ADSTART;
-
- /* Initialize the timer. Set the divider to get a nice round microsecond tick. The interval must be long enough to
- * comfortably fit all conversions inside. There should be some margin since the ADC runs off its own internal RC
- * oscillator and will drift w.r.t. the system clock. 20us is a nice value when four channels are selected (A, B,
- * T and V).
- */
- adc_timer_init(SystemCoreClock/1000000/*1.0us/tick*/, 20/* us */);
-}
-
-static void adc_dma_init(int burstlen, bool enable_interrupt) {
- /* Configure DMA 1 Channel 1 to get rid of all the data */
- DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR;
- DMA1_Channel1->CMAR = (unsigned int)&adc_buf;
- DMA1_Channel1->CNDTR = burstlen;
- DMA1_Channel1->CCR = (0<<DMA_CCR_PL_Pos);
- DMA1_Channel1->CCR |=
- DMA_CCR_CIRC /* circular mode so we can leave it running indefinitely */
- | (1<<DMA_CCR_MSIZE_Pos) /* 16 bit */
- | (1<<DMA_CCR_PSIZE_Pos) /* 16 bit */
- | DMA_CCR_MINC
- | (enable_interrupt ? DMA_CCR_TCIE : 0); /* Enable transfer complete interrupt. */
-
- if (enable_interrupt) {
- /* triggered on transfer completion. We use this to process the ADC data */
- NVIC_EnableIRQ(DMA1_Channel1_IRQn);
- NVIC_SetPriority(DMA1_Channel1_IRQn, 2<<5);
- } else {
- NVIC_DisableIRQ(DMA1_Channel1_IRQn);
- DMA1->IFCR |= DMA_IFCR_CGIF1;
- }
-
- DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */
-}
-
-static void adc_timer_init(int psc, int ivl) {
- TIM1->BDTR = TIM_BDTR_MOE; /* MOE is needed even though we only "output" a chip-internal signal TODO: Verify this. */
- TIM1->CCMR2 = (6<<TIM_CCMR2_OC4M_Pos); /* PWM Mode 1 to get a clean trigger signal */
- TIM1->CCER = TIM_CCER_CC4E; /* Enable capture/compare unit 4 connected to ADC */
- TIM1->CCR4 = 1; /* Trigger at start of timer cycle */
- /* Set prescaler and interval */
- TIM1->PSC = psc-1;
- TIM1->ARR = ivl-1;
- /* Preload all values */
- TIM1->EGR |= TIM_EGR_UG;
- TIM1->CR1 = TIM_CR1_ARPE;
- /* And... go! */
- TIM1->CR1 |= TIM_CR1_CEN;
-}
-
-/* This acts as a no-op that provides a convenient point to set a breakpoint for the debug scope logic */
-static void gdb_dump(void) {
-}
-
-/* Called on reception of a bit. This feeds the bit to the 8b10b state machine. When the 8b10b state machine recognizes
- * a received symbol, this in turn calls receive_symbol. Since this is called at sampling time roughly halfway into a
- * bit being received, receive_symbol is called roughly half-way through the last bit of the symbol, just before the
- * symbol's end.
- */
-void receive_bit(struct bit_detector_st *st, int bit) {
- int symbol = xfr_8b10b_feed_bit((struct state_8b10b_dec *)&st->rx8b10b, bit);
- if (symbol == -K28_1)
- st->sync = 1;
-
- if (symbol == -DECODING_IN_PROGRESS)
- return;
-
- if (symbol == -DECODING_ERROR)
- st->sync = 0;
- /* Fall through so we also pass the error to receive_symbol */
-
- receive_symbol(&st->rx_st, symbol);
-
- /* Exceedingly handy piece of debug code: The Debug Scope 2000 (TM) */
- /*
- static int debug_buf_pos = 0;
- if (st->sync) {
- if (debug_buf_pos < NCH) {
- debug_buf_pos = NCH;
- } else {
- adc_buf[debug_buf_pos++] = symbol;
-
- if (debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) {
- debug_buf_pos = 0;
- st->sync = 0;
- gdb_dump();
- for (int i=0; i<sizeof(adc_buf)/sizeof(adc_buf[0]); i++)
- adc_buf[i] = -255;
- }
- }
- }
- */
-}
-
-/* From a series of detected line levels, extract discrete bits. This self-synchronizes to signal transitions. This
- * expects base_interval_cycles to be set correctly. When a bit is detected, this calls receive_bit(st, bit). The call
- * to receive_bit happens at the sampling point about half-way through the bit being received.
- */
-void bit_detector(struct bit_detector_st *st, int a) {
- int new_bit = st->last_bit;
- int diff = a-5500; /* FIXME extract constants */
- if (diff < - st->hysteresis_mv/2)
- new_bit = 0;
- else if (diff > st->hysteresis_mv/2)
- new_bit = 1;
- else
- blank(); /* Safety, in case we get an unexpected transition */
-
- st->len_ctr++;
- if (new_bit != st->last_bit) { /* On transition */
- st->last_bit = new_bit;
- st->len_ctr = 0;
- st->committed_len_ctr = st->base_interval_cycles>>1; /* Commit first half of bit */
-
- } else if (st->len_ctr >= st->committed_len_ctr) {
- /* The line stayed constant for a longer interval than the commited length. Interpret this as a transmitted bit.
- *
- * +-- Master clock edges -->| - - - - |<-- One bit period
- * | | |
- * 1 X X X X X X X X
- * ____/^^^^*^^^^\_______________________________________/^^^^*^^^^^^^^^*^^^^\__________________________________
- * 0 v ^ v ^
- * | | | |
- * | +-------------------------------+ +---------+
- * | | |
- * At this point, commit 1/2 bit (until here). This When we arrive at the committed value, commit next
- * happens in the block above. full bit as we're now right in the middle of the
- * first bit. This happens in the line below.
- */
-
- /* Commit second half of this and first half of possible next bit */
- st->committed_len_ctr += st->base_interval_cycles;
- receive_bit(st, st->last_bit);
- }
-}
-
-void DMA1_Channel1_IRQHandler(void) {
- /* ISR timing measurement for debugging */
- //int start = SysTick->VAL;
-
- /* Clear the interrupt flag */
- DMA1->IFCR |= DMA_IFCR_CGIF1;
-
- if (st.adc_mode == ADC_SCOPE)
- return;
-
- /* FIXME This code section currently is a mess since I left it as soon as it worked. Re-work this and try to get
- * back all the useful monitoring stuff, in particular temperature. */
-
- /* This has been copied from the code examples to section 12.9 ADC>"Temperature sensor and internal reference
- * voltage" in the reference manual with the extension that we actually measure the supply voltage instead of
- * hardcoding it. This is not strictly necessary since we're running off a bored little LDO but it's free and
- * the current supply voltage is a nice health value.
- */
- // FIXME DEBUG adc_data.vcc_mv = (3300 * VREFINT_CAL)/(st.adc_aggregate[VREF_CH]);
-
- int64_t vcc = 3300;
- /* FIXME debug
- int64_t vcc = adc_data.vcc_mv;
- int64_t read = st.adc_aggregate[TEMP_CH] * 10 * 10000;
- int64_t cal = TS_CAL1 * 10 * 10000;
- adc_data.temp_celsius_tenths = 300 + ((read/4096 * vcc) - (cal/4096 * 3300))/43000;
- */
-
- /* Calculate the line voltage from the measured ADC voltage and the used resistive divider ratio */
- const long vmeas_r_total = VMEAS_R_HIGH + VMEAS_R_LOW;
- //int a = adc_data.vmeas_a_mv = (st.adc_aggregate[VMEAS_A]*(vmeas_r_total * vcc / VMEAS_R_LOW)) >> 12;
- int a = adc_data.vmeas_a_mv = (adc_buf[VMEAS_A]*13300) >> 12;
- bit_detector((struct bit_detector_st *)&st.det_st, a);
-
- /* ISR timing measurement for debugging */
- /*
- int end = SysTick->VAL;
- int tdiff = start - end;
- if (tdiff < 0)
- tdiff += SysTick->LOAD;
- st.dma_isr_duration = tdiff;
- */
-}
-