aboutsummaryrefslogtreecommitdiff
path: root/center_fw/adc.c
diff options
context:
space:
mode:
Diffstat (limited to 'center_fw/adc.c')
-rw-r--r--center_fw/adc.c271
1 files changed, 271 insertions, 0 deletions
diff --git a/center_fw/adc.c b/center_fw/adc.c
new file mode 100644
index 0000000..eb5d4b5
--- /dev/null
+++ b/center_fw/adc.c
@@ -0,0 +1,271 @@
+/* Megumin LED display firmware
+ * Copyright (C) 2018 Sebastian Götte <code@jaseg.net>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "adc.h"
+
+#include <stdbool.h>
+#include <stdlib.h>
+
+#define DETECTOR_CHANNEL a
+
+volatile uint16_t adc_buf[ADC_BUFSIZE];
+volatile struct adc_state adc_state = {0};
+#define st adc_state
+volatile struct adc_measurements adc_data;
+
+static void adc_dma_init(int burstlen, bool enable_interrupt);
+static void adc_timer_init(int psc, int ivl);
+
+
+/* Mode that can be used for debugging */
+void adc_configure_scope_mode(uint8_t channel_mask, int sampling_interval_ns) {
+ /* The constant SAMPLE_FAST (0) when passed in as sampling_interval_ns is handled specially in that we turn the ADC
+ to continuous mode to get the highest possible sampling rate. */
+
+ /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */
+ TIM1->CR1 &= ~TIM_CR1_CEN;
+ ADC1->CR &= ~ADC_CR_ADSTART;
+ DMA1_Channel1->CCR &= ~DMA_CCR_EN;
+
+ /* keep track of current mode in global variable */
+ st.adc_mode = ADC_SCOPE;
+
+ adc_dma_init(sizeof(adc_buf)/sizeof(adc_buf[0]), true);
+
+ /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */
+ ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */
+ /* Sampling time 13.5 ADC clock cycles -> total conversion time 2.17us*/
+ ADC1->SMPR = (2<<ADC_SMPR_SMP_Pos);
+
+ /* Setup DMA and triggering */
+ if (sampling_interval_ns == SAMPLE_FAST) /* Continuous trigger */
+ ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_CONT;
+ else /* Trigger from timer 1 Channel 4 */
+ ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos);
+ ADC1->CHSELR = channel_mask;
+ /* Perform self-calibration */
+ ADC1->CR |= ADC_CR_ADCAL;
+ while (ADC1->CR & ADC_CR_ADCAL)
+ ;
+ /* Enable conversion */
+ ADC1->CR |= ADC_CR_ADEN;
+ ADC1->CR |= ADC_CR_ADSTART;
+
+ if (sampling_interval_ns == SAMPLE_FAST)
+ return; /* We don't need the timer to trigger in continuous mode. */
+
+ /* An ADC conversion takes 1.1667us, so to be sure we don't get data overruns we limit sampling to every 1.5us.
+ Since we don't have a spare PLL to generate the ADC sample clock and re-configuring the system clock just for this
+ would be overkill we round to 250ns increments. The minimum sampling rate is about 60Hz due to timer resolution. */
+ int cycles = sampling_interval_ns > 1500 ? sampling_interval_ns/250 : 6;
+ if (cycles > 0xffff)
+ cycles = 0xffff;
+ adc_timer_init(12/*250ns/tick*/, cycles);
+}
+
+/* Regular operation receiver mode */
+void adc_configure_monitor_mode(struct command_if_def *cmd_if, int ivl_us) {
+ /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */
+ TIM1->CR1 &= ~TIM_CR1_CEN;
+ ADC1->CR &= ~ADC_CR_ADSTART;
+ DMA1_Channel1->CCR &= ~DMA_CCR_EN;
+
+ /* keep track of current mode in global variable */
+ st.adc_mode = ADC_MONITOR;
+
+ for (int i=0; i<NCH; i++)
+ st.adc_aggregate[i] = 0;
+ st.mean_aggregator[0] = st.mean_aggregator[1] = st.mean_aggregator[2] = 0;
+ st.mean_aggregate_ctr = 0;
+
+ st.det_st.hysteresis_mv = 6000;
+ st.det_st.base_interval_cycles = 10;
+
+ st.det_st.sync = 0;
+ st.det_st.last_bit = 0;
+ st.det_st.committed_len_ctr = st.det_st.len_ctr = 0;
+ xfr_8b10b_reset((struct state_8b10b_dec *)&st.det_st.rx8b10b);
+ reset_receiver((struct proto_rx_st *)&st.det_st.rx_st, cmd_if);
+
+ adc_dma_init(NCH, true);
+
+ /* Setup DMA and triggering: Trigger from Timer 1 Channel 4 */
+ ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos);
+ /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */
+ ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */
+ /* Sampling time 13.5 ADC clock cycles -> total conversion time 2.17us*/
+ ADC1->SMPR = (2<<ADC_SMPR_SMP_Pos);
+ /* Internal VCC and temperature sensor channels */
+ ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17;
+ /* Enable internal voltage reference and temperature sensor */
+ ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN;
+ /* Perform ADC calibration */
+ ADC1->CR |= ADC_CR_ADCAL;
+ while (ADC1->CR & ADC_CR_ADCAL)
+ ;
+ /* Enable ADC */
+ ADC1->CR |= ADC_CR_ADEN;
+ ADC1->CR |= ADC_CR_ADSTART;
+
+ adc_timer_init(SystemCoreClock/1000000/*1.0us/tick*/, ivl_us);
+}
+
+static void adc_dma_init(int burstlen, bool enable_interrupt) {
+ /* Configure DMA 1 Channel 1 to get rid of all the data */
+ DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR;
+ DMA1_Channel1->CMAR = (unsigned int)&adc_buf;
+ DMA1_Channel1->CNDTR = burstlen;
+ DMA1_Channel1->CCR = (0<<DMA_CCR_PL_Pos);
+ DMA1_Channel1->CCR |=
+ DMA_CCR_CIRC /* circular mode so we can leave it running indefinitely */
+ | (1<<DMA_CCR_MSIZE_Pos) /* 16 bit */
+ | (1<<DMA_CCR_PSIZE_Pos) /* 16 bit */
+ | DMA_CCR_MINC
+ | (enable_interrupt ? DMA_CCR_TCIE : 0); /* Enable transfer complete interrupt. */
+
+ if (enable_interrupt) {
+ /* triggered on transfer completion. We use this to process the ADC data */
+ NVIC_EnableIRQ(DMA1_Channel1_IRQn);
+ NVIC_SetPriority(DMA1_Channel1_IRQn, 2<<5);
+ } else {
+ NVIC_DisableIRQ(DMA1_Channel1_IRQn);
+ DMA1->IFCR |= DMA_IFCR_CGIF1;
+ }
+
+ DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */
+}
+
+static void adc_timer_init(int psc, int ivl) {
+ TIM1->BDTR = TIM_BDTR_MOE; /* MOE is needed even though we only "output" a chip-internal signal TODO: Verify this. */
+ TIM1->CCMR2 = (6<<TIM_CCMR2_OC4M_Pos); /* PWM Mode 1 to get a clean trigger signal */
+ TIM1->CCER = TIM_CCER_CC4E; /* Enable capture/compare unit 4 connected to ADC */
+ TIM1->CCR4 = 1; /* Trigger at start of timer cycle */
+ /* Set prescaler and interval */
+ TIM1->PSC = psc-1;
+ TIM1->ARR = ivl-1;
+ /* Preload all values */
+ TIM1->EGR |= TIM_EGR_UG;
+ TIM1->CR1 = TIM_CR1_ARPE;
+ /* And... go! */
+ TIM1->CR1 |= TIM_CR1_CEN;
+}
+
+/* This acts as a no-op that provides a convenient point to set a breakpoint for the debug scope logic */
+static void gdb_dump(void) {
+}
+
+void receive_bit(struct bit_detector_st *st, int bit) {
+ int symbol = xfr_8b10b_feed_bit((struct state_8b10b_dec *)&st->rx8b10b, bit);
+ if (symbol == -K28_1)
+ st->sync = 1;
+
+ if (symbol == -DECODING_IN_PROGRESS)
+ return;
+
+ if (symbol == -DECODING_ERROR)
+ st->sync = 0;
+ /* Fall through so we also pass the error to receive_symbol */
+
+ GPIOA->BSRR = 1<<9;
+ receive_symbol(&st->rx_st, symbol);
+ GPIOA->BRR = 1<<9;
+
+ /* Debug scope logic */
+ /*
+ static int debug_buf_pos = 0;
+ if (st->sync) {
+ if (debug_buf_pos < NCH) {
+ debug_buf_pos = NCH;
+ } else {
+ adc_buf[debug_buf_pos++] = symbol;
+
+ if (debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) {
+ debug_buf_pos = 0;
+ st->sync = 0;
+ gdb_dump();
+ for (int i=0; i<sizeof(adc_buf)/sizeof(adc_buf[0]); i++)
+ adc_buf[i] = -255;
+ }
+ }
+ }
+ */
+}
+
+void bit_detector(struct bit_detector_st *st, int a) {
+ int new_bit = st->last_bit;
+ int diff = a-5500;
+ if (diff < - st->hysteresis_mv/2)
+ new_bit = 0;
+ else if (diff > st->hysteresis_mv/2)
+ new_bit = 1;
+ else
+ blank();
+
+ st->len_ctr++;
+ if (new_bit != st->last_bit) {
+ st->last_bit = new_bit;
+ st->len_ctr = 0;
+ st->committed_len_ctr = st->base_interval_cycles>>1;
+
+ } else if (st->len_ctr >= st->committed_len_ctr) {
+ st->committed_len_ctr += st->base_interval_cycles;
+ receive_bit(st, st->last_bit);
+ }
+}
+
+void DMA1_Channel1_IRQHandler(void) {
+ GPIOA->BSRR = 1<<5;
+ /* ISR timing measurement for debugging */
+ //int start = SysTick->VAL;
+
+ /* Clear the interrupt flag */
+ DMA1->IFCR |= DMA_IFCR_CGIF1;
+
+ if (st.adc_mode == ADC_SCOPE)
+ return;
+
+ /* This has been copied from the code examples to section 12.9 ADC>"Temperature sensor and internal reference
+ * voltage" in the reference manual with the extension that we actually measure the supply voltage instead of
+ * hardcoding it. This is not strictly necessary since we're running off a bored little LDO but it's free and
+ * the current supply voltage is a nice health value.
+ */
+ // FIXME DEBUG adc_data.adc_vcc_mv = (3300 * VREFINT_CAL)/(st.adc_aggregate[VREF_CH]);
+
+ int64_t vcc = 3300;
+ /* FIXME debug
+ int64_t vcc = adc_data.adc_vcc_mv;
+ int64_t read = st.adc_aggregate[TEMP_CH] * 10 * 10000;
+ int64_t cal = TS_CAL1 * 10 * 10000;
+ adc_data.adc_temp_celsius_tenths = 300 + ((read/4096 * vcc) - (cal/4096 * 3300))/43000;
+ */
+
+ const long vmeas_r_total = VMEAS_R_HIGH + VMEAS_R_LOW;
+ //int a = adc_data.adc_vmeas_a_mv = (st.adc_aggregate[VMEAS_A]*(vmeas_r_total * vcc / VMEAS_R_LOW)) >> 12;
+ int a = adc_data.adc_vmeas_a_mv = (adc_buf[VMEAS_A]*13300) >> 12;
+ bit_detector((struct bit_detector_st *)&st.det_st, a);
+
+ /* ISR timing measurement for debugging */
+ /*
+ int end = SysTick->VAL;
+ int tdiff = start - end;
+ if (tdiff < 0)
+ tdiff += SysTick->LOAD;
+ st.dma_isr_duration = tdiff;
+ */
+ GPIOA->BRR = 1<<5;
+}
+