diff options
author | jaseg <git@jaseg.de> | 2023-09-25 23:57:36 +0200 |
---|---|---|
committer | jaseg <git@jaseg.de> | 2023-09-25 23:57:36 +0200 |
commit | 8cc05c79cea62609d02231492c054a0cca2b2289 (patch) | |
tree | e39d40456adefe9bb70bcd77ebdf97be1dcdc028 /center_fw/src/adc.c | |
parent | 583ac10d1450610a4110849c26cc16f03154d26e (diff) | |
download | 8seg-8cc05c79cea62609d02231492c054a0cca2b2289.tar.gz 8seg-8cc05c79cea62609d02231492c054a0cca2b2289.tar.bz2 8seg-8cc05c79cea62609d02231492c054a0cca2b2289.zip |
Center firmware WIP
Diffstat (limited to 'center_fw/src/adc.c')
-rw-r--r-- | center_fw/src/adc.c | 305 |
1 files changed, 305 insertions, 0 deletions
diff --git a/center_fw/src/adc.c b/center_fw/src/adc.c new file mode 100644 index 0000000..0cf70d1 --- /dev/null +++ b/center_fw/src/adc.c @@ -0,0 +1,305 @@ +/* Megumin LED display firmware + * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include "adc.h" + +#include <stdbool.h> +#include <stdlib.h> + +#define DETECTOR_CHANNEL a + +volatile uint16_t adc_buf[ADC_BUFSIZE]; +volatile struct adc_state adc_state = {0}; +#define st adc_state +volatile struct adc_measurements adc_data; + +static void adc_dma_init(int burstlen, bool enable_interrupt); +static void adc_timer_init(int psc, int ivl); + + +/* Mode that can be used for debugging */ +void adc_configure_scope_mode(uint8_t channel_mask, int sampling_interval_ns) { + /* The constant SAMPLE_FAST (0) when passed in as sampling_interval_ns is handled specially in that we turn the ADC + to continuous mode to get the highest possible sampling rate. */ + + /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */ + TIM1->CR1 &= ~TIM_CR1_CEN; + ADC1->CR &= ~ADC_CR_ADSTART; + DMA1_Channel1->CCR &= ~DMA_CCR_EN; + + /* keep track of current mode in global variable */ + st.adc_mode = ADC_SCOPE; + + adc_dma_init(sizeof(adc_buf)/sizeof(adc_buf[0]), true); + + /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */ + ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */ + /* Sampling time 13.5 ADC clock cycles -> total conversion time 2.17us*/ + ADC1->SMPR = (2<<ADC_SMPR_SMP_Pos); + + /* Setup DMA and triggering */ + if (sampling_interval_ns == SAMPLE_FAST) /* Continuous trigger */ + ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | ADC_CFGR1_CONT; + else /* Trigger from timer 1 Channel 4 */ + ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos); + ADC1->CHSELR = channel_mask; + /* Perform self-calibration */ + ADC1->CR |= ADC_CR_ADCAL; + while (ADC1->CR & ADC_CR_ADCAL) + ; + /* Enable conversion */ + ADC1->CR |= ADC_CR_ADEN; + ADC1->CR |= ADC_CR_ADSTART; + + if (sampling_interval_ns == SAMPLE_FAST) + return; /* We don't need the timer to trigger in continuous mode. */ + + /* An ADC conversion takes 1.1667us, so to be sure we don't get data overruns we limit sampling to every 1.5us. + Since we don't have a spare PLL to generate the ADC sample clock and re-configuring the system clock just for this + would be overkill we round to 250ns increments. The minimum sampling rate is about 60Hz due to timer resolution. */ + int cycles = sampling_interval_ns > 1500 ? sampling_interval_ns/250 : 6; + if (cycles > 0xffff) + cycles = 0xffff; + adc_timer_init(12/*250ns/tick*/, cycles); +} + +/* FIXME figure out the proper place to configure this. */ +#define ADC_TIMER_INTERVAL_US 20 + +/* Regular operation receiver mode. */ +void adc_configure_monitor_mode(const struct command_if_def *cmd_if) { + /* First, disable trigger timer, DMA and ADC in case we're reconfiguring on the fly. */ + TIM1->CR1 &= ~TIM_CR1_CEN; + ADC1->CR &= ~ADC_CR_ADSTART; + DMA1_Channel1->CCR &= ~DMA_CCR_EN; + + /* keep track of current mode in global variable */ + st.adc_mode = ADC_MONITOR; + + for (int i=0; i<NCH; i++) + st.adc_aggregate[i] = 0; + st.mean_aggregator[0] = st.mean_aggregator[1] = st.mean_aggregator[2] = 0; + st.mean_aggregate_ctr = 0; + + st.det_st.hysteresis_mv = 6000; + /* base_cycles * the ADC timer interval (20us) must match the driver's AC period. */ + st.det_st.base_interval_cycles = 40; /* 40 * 20us = 800us/1.25kHz */ + + st.det_st.sync = 0; + st.det_st.last_bit = 0; + st.det_st.committed_len_ctr = st.det_st.len_ctr = 0; + xfr_8b10b_reset((struct state_8b10b_dec *)&st.det_st.rx8b10b); + reset_receiver((struct proto_rx_st *)&st.det_st.rx_st, cmd_if); + + adc_dma_init(NCH, true); + + /* Setup DMA and triggering: Trigger from Timer 1 Channel 4 */ + ADC1->CFGR1 = ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG | (2<<ADC_CFGR1_EXTEN_Pos) | (1<<ADC_CFGR1_EXTSEL_Pos); + /* Clock from PCLK/4 instead of the internal exclusive high-speed RC oscillator. */ + ADC1->CFGR2 = (2<<ADC_CFGR2_CKMODE_Pos); /* Use PCLK/4=12MHz */ + /* Sampling time 13.5 ADC clock cycles -> total conversion time 2.17us*/ + ADC1->SMPR = (2<<ADC_SMPR_SMP_Pos); + /* Internal VCC and temperature sensor channels */ + ADC1->CHSELR = ADC_CHSELR_CHSEL0 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; + /* Enable internal voltage reference and temperature sensor */ + ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN; + /* Perform ADC calibration */ + ADC1->CR |= ADC_CR_ADCAL; + while (ADC1->CR & ADC_CR_ADCAL) + ; + /* Enable ADC */ + ADC1->CR |= ADC_CR_ADEN; + ADC1->CR |= ADC_CR_ADSTART; + + /* Initialize the timer. Set the divider to get a nice round microsecond tick. The interval must be long enough to + * comfortably fit all conversions inside. There should be some margin since the ADC runs off its own internal RC + * oscillator and will drift w.r.t. the system clock. 20us is a nice value when four channels are selected (A, B, + * T and V). + */ + adc_timer_init(SystemCoreClock/1000000/*1.0us/tick*/, 20/* us */); +} + +static void adc_dma_init(int burstlen, bool enable_interrupt) { + /* Configure DMA 1 Channel 1 to get rid of all the data */ + DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR; + DMA1_Channel1->CMAR = (unsigned int)&adc_buf; + DMA1_Channel1->CNDTR = burstlen; + DMA1_Channel1->CCR = (0<<DMA_CCR_PL_Pos); + DMA1_Channel1->CCR |= + DMA_CCR_CIRC /* circular mode so we can leave it running indefinitely */ + | (1<<DMA_CCR_MSIZE_Pos) /* 16 bit */ + | (1<<DMA_CCR_PSIZE_Pos) /* 16 bit */ + | DMA_CCR_MINC + | (enable_interrupt ? DMA_CCR_TCIE : 0); /* Enable transfer complete interrupt. */ + + if (enable_interrupt) { + /* triggered on transfer completion. We use this to process the ADC data */ + NVIC_EnableIRQ(DMA1_Channel1_IRQn); + NVIC_SetPriority(DMA1_Channel1_IRQn, 2<<5); + } else { + NVIC_DisableIRQ(DMA1_Channel1_IRQn); + DMA1->IFCR |= DMA_IFCR_CGIF1; + } + + DMA1_Channel1->CCR |= DMA_CCR_EN; /* Enable channel */ +} + +static void adc_timer_init(int psc, int ivl) { + TIM1->BDTR = TIM_BDTR_MOE; /* MOE is needed even though we only "output" a chip-internal signal TODO: Verify this. */ + TIM1->CCMR2 = (6<<TIM_CCMR2_OC4M_Pos); /* PWM Mode 1 to get a clean trigger signal */ + TIM1->CCER = TIM_CCER_CC4E; /* Enable capture/compare unit 4 connected to ADC */ + TIM1->CCR4 = 1; /* Trigger at start of timer cycle */ + /* Set prescaler and interval */ + TIM1->PSC = psc-1; + TIM1->ARR = ivl-1; + /* Preload all values */ + TIM1->EGR |= TIM_EGR_UG; + TIM1->CR1 = TIM_CR1_ARPE; + /* And... go! */ + TIM1->CR1 |= TIM_CR1_CEN; +} + +/* This acts as a no-op that provides a convenient point to set a breakpoint for the debug scope logic */ +static void gdb_dump(void) { +} + +/* Called on reception of a bit. This feeds the bit to the 8b10b state machine. When the 8b10b state machine recognizes + * a received symbol, this in turn calls receive_symbol. Since this is called at sampling time roughly halfway into a + * bit being received, receive_symbol is called roughly half-way through the last bit of the symbol, just before the + * symbol's end. + */ +void receive_bit(struct bit_detector_st *st, int bit) { + int symbol = xfr_8b10b_feed_bit((struct state_8b10b_dec *)&st->rx8b10b, bit); + if (symbol == -K28_1) + st->sync = 1; + + if (symbol == -DECODING_IN_PROGRESS) + return; + + if (symbol == -DECODING_ERROR) + st->sync = 0; + /* Fall through so we also pass the error to receive_symbol */ + + receive_symbol(&st->rx_st, symbol); + + /* Exceedingly handy piece of debug code: The Debug Scope 2000 (TM) */ + /* + static int debug_buf_pos = 0; + if (st->sync) { + if (debug_buf_pos < NCH) { + debug_buf_pos = NCH; + } else { + adc_buf[debug_buf_pos++] = symbol; + + if (debug_buf_pos >= sizeof(adc_buf)/sizeof(adc_buf[0])) { + debug_buf_pos = 0; + st->sync = 0; + gdb_dump(); + for (int i=0; i<sizeof(adc_buf)/sizeof(adc_buf[0]); i++) + adc_buf[i] = -255; + } + } + } + */ +} + +/* From a series of detected line levels, extract discrete bits. This self-synchronizes to signal transitions. This + * expects base_interval_cycles to be set correctly. When a bit is detected, this calls receive_bit(st, bit). The call + * to receive_bit happens at the sampling point about half-way through the bit being received. + */ +void bit_detector(struct bit_detector_st *st, int a) { + int new_bit = st->last_bit; + int diff = a-5500; /* FIXME extract constants */ + if (diff < - st->hysteresis_mv/2) + new_bit = 0; + else if (diff > st->hysteresis_mv/2) + new_bit = 1; + else + blank(); /* Safety, in case we get an unexpected transition */ + + st->len_ctr++; + if (new_bit != st->last_bit) { /* On transition */ + st->last_bit = new_bit; + st->len_ctr = 0; + st->committed_len_ctr = st->base_interval_cycles>>1; /* Commit first half of bit */ + + } else if (st->len_ctr >= st->committed_len_ctr) { + /* The line stayed constant for a longer interval than the commited length. Interpret this as a transmitted bit. + * + * +-- Master clock edges -->| - - - - |<-- One bit period + * | | | + * 1 X X X X X X X X + * ____/^^^^*^^^^\_______________________________________/^^^^*^^^^^^^^^*^^^^\__________________________________ + * 0 v ^ v ^ + * | | | | + * | +-------------------------------+ +---------+ + * | | | + * At this point, commit 1/2 bit (until here). This When we arrive at the committed value, commit next + * happens in the block above. full bit as we're now right in the middle of the + * first bit. This happens in the line below. + */ + + /* Commit second half of this and first half of possible next bit */ + st->committed_len_ctr += st->base_interval_cycles; + receive_bit(st, st->last_bit); + } +} + +void DMA1_Channel1_IRQHandler(void) { + /* ISR timing measurement for debugging */ + //int start = SysTick->VAL; + + /* Clear the interrupt flag */ + DMA1->IFCR |= DMA_IFCR_CGIF1; + + if (st.adc_mode == ADC_SCOPE) + return; + + /* FIXME This code section currently is a mess since I left it as soon as it worked. Re-work this and try to get + * back all the useful monitoring stuff, in particular temperature. */ + + /* This has been copied from the code examples to section 12.9 ADC>"Temperature sensor and internal reference + * voltage" in the reference manual with the extension that we actually measure the supply voltage instead of + * hardcoding it. This is not strictly necessary since we're running off a bored little LDO but it's free and + * the current supply voltage is a nice health value. + */ + // FIXME DEBUG adc_data.vcc_mv = (3300 * VREFINT_CAL)/(st.adc_aggregate[VREF_CH]); + + int64_t vcc = 3300; + /* FIXME debug + int64_t vcc = adc_data.vcc_mv; + int64_t read = st.adc_aggregate[TEMP_CH] * 10 * 10000; + int64_t cal = TS_CAL1 * 10 * 10000; + adc_data.temp_celsius_tenths = 300 + ((read/4096 * vcc) - (cal/4096 * 3300))/43000; + */ + + /* Calculate the line voltage from the measured ADC voltage and the used resistive divider ratio */ + const long vmeas_r_total = VMEAS_R_HIGH + VMEAS_R_LOW; + //int a = adc_data.vmeas_a_mv = (st.adc_aggregate[VMEAS_A]*(vmeas_r_total * vcc / VMEAS_R_LOW)) >> 12; + int a = adc_data.vmeas_a_mv = (adc_buf[VMEAS_A]*13300) >> 12; + bit_detector((struct bit_detector_st *)&st.det_st, a); + + /* ISR timing measurement for debugging */ + /* + int end = SysTick->VAL; + int tdiff = start - end; + if (tdiff < 0) + tdiff += SysTick->LOAD; + st.dma_isr_duration = tdiff; + */ +} + |