#pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wstrict-aliasing" #include #include #include #pragma GCC diagnostic pop #include #include #include #include #include "transpose.h" /* * Part number: STM32F030F4C6 */ /* Wait for about 0.2us */ static void tick(void) { /* 1 */ /* 2 */ /* 3 */ /* 4 */ /* 5 */ /* 5 */ __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); /* 10 */ __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); } void spi_send(int data) { SPI1->DR = data; while (SPI1->SR & SPI_SR_BSY); } void strobe_aux(void) { GPIOA->BSRR = GPIO_BSRR_BS_10; tick(); GPIOA->BSRR = GPIO_BSRR_BR_10; } void strobe_leds(void) { GPIOA->BSRR = GPIO_BSRR_BS_9; tick(); GPIOA->BSRR = GPIO_BSRR_BR_9; } static volatile unsigned int sys_time = 0; volatile struct framebuf fb[2] = {0}; volatile struct framebuf *read_fb=fb+0, *write_fb=fb+1; volatile int led_state = 0; volatile enum { FB_WRITE, FB_FORMAT, FB_UPDATE } fb_op; volatile uint8_t rx_buf[sizeof(struct framebuf) + 4 /* crc */]; volatile uint8_t this_addr = 0x05; /* FIXME */ #define LED_COMM 0x0001 #define LED_ERROR 0x0002 #define LED_ID 0x0004 #define SR_ILED_HIGH 0x0080 #define SR_ILED_LOW 0x0040 inline unsigned int stk_start() { return SysTick->VAL; } inline unsigned int stk_end(unsigned int start) { return (start - SysTick->VAL) & 0xffffff; } enum { SPI_AUX, SPI_WORD0, SPI_WORD1, SPI_IDLE, } spi_state; static volatile uint32_t spi_word = 0; void cfg_spi1() { /* Configure SPI controller */ SPI1->I2SCFGR = 0; SPI1->CR2 &= ~SPI_CR2_DS_Msk; SPI1->CR2 &= ~SPI_CR2_DS_Msk; SPI1->CR2 |= LL_SPI_DATAWIDTH_16BIT; /* Baud rate PCLK/2 -> 25MHz */ SPI1->CR1 = SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE | SPI_CR1_SSM | SPI_CR1_SSI | SPI_CR1_SPE | (0<DR = spi_word>>16; break; case SPI_WORD0: SPI1->DR = spi_word&0xFFFF; break; default: tick(); /* This one is important. Otherwise, weird stuff happens and parts of the aux register seem to leak into the driver registers. */ strobe_leds(); SPI1->CR2 &= ~SPI_CR2_TXEIE; break; } spi_state ++; } static volatile int frame_duration; /* returns new bit time in cycles */ int shift_data() { static int active_segment = 0; static unsigned int active_bit = 0; static int last_frame_sys_time; /* Note: On boot, multiplexing will start with bit 1 due to the next few lines. This is perfectly ok. */ int rv = 1<data[active_bit*frame_size_words + active_segment]; spi_state = SPI_AUX; SPI1->DR = (read_fb->brightness ? SR_ILED_HIGH : SR_ILED_LOW) | (led_state<<1) | (0xff00 ^ (0x100<data[active_bit*frame_size_words + active_segment]; spi_state = SPI_WORD0; SPI1->DR = spi_word>>16; } SPI1->CR2 |= SPI_CR2_TXEIE; return rv; } void cfg_timer3() { /* Capture/compare channel 1 is used to generate the LED driver !OE signal. Channel 2 is used to trigger the * interrupt to load the next bits in to the shift registers. Channel 2 triggers simultaneously with channel 1 at * long !OE periods but will be delayed slightly to a fixed 32 timer periods (12.8us) to allow for SPI1 to finish * shifting out all frame data before asserting !OE. */ TIM3->CCMR1 = 6<CCER = TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC2E | TIM_CCER_CC2P; /* Inverting output */ TIM3->DIER = TIM_DIER_CC2IE; TIM3->CCR2 = 1000; /* Schedule first interrupt */ TIM3->PSC = SystemCoreClock/5000000 * 2; /* 0.40us/tick */ TIM3->ARR = 0xffff; TIM3->EGR |= TIM_EGR_UG; TIM3->CR1 = TIM_CR1_ARPE; TIM3->CR1 |= TIM_CR1_CEN; NVIC_EnableIRQ(TIM3_IRQn); NVIC_SetPriority(TIM3_IRQn, 2); } void TIM3_IRQHandler() { //TIM3->CR1 &= ~TIM_CR1_CEN_Msk; FIXME int period = shift_data(); TIM3->CCR1 = period; if (period < 32) /* FIXME this constant */ TIM3->CCR2 = 32; else TIM3->CCR2 = period; TIM3->CNT = 0xffff; /* To not enable OC1 riglt away */ TIM3->SR &= ~TIM_SR_CC2IF_Msk; //TIM3->CR1 |= TIM_CR1_CEN; } enum Command { CMD_PING, CMD_SET_ADDR, CMD_SET_FB, CMD_GET_DESC, }; int gaddr; void USART1_IRQHandler() { gaddr = USART1->RDR; USART1->RQR |= USART_RQR_RXFRQ; int addr = gaddr; /* FIXME DEBUG */ int cmd = addr>>5; addr &= 0x1F; /* Overrun detected? */ if (USART1->ISR & USART_ISR_ORE) { USART1->ICR |= USART_ICR_ORECF; USART1->RQR |= USART_RQR_MMRQ; } /* Are we addressed? */ if (addr != this_addr) { /* We are not. Mute USART until next idle condition */ USART1->RQR |= USART_RQR_MMRQ; } else { /* We are. Switch by command. */ switch (cmd) { case CMD_SET_FB: /* Are we ready to process new frame data? */ if (fb_op != FB_WRITE) { //asm("bkpt"); /* FIXME DEBUG */ goto errout; /* Error: Not yet ready to receive new packet */ } /* Disable this RX interrupt for duration of DMA transfer */ USART1->CR1 &= ~USART_CR1_RXNEIE_Msk; /* Enable DMA transfer to write buffer */ DMA1->IFCR |= DMA_IFCR_CGIF3; DMA1_Channel3->CCR |= DMA_CCR_EN; USART1->CR3 |= USART_CR3_DMAR; break; } } errout: /* FIXME */ return; } void DMA1_Channel2_3_IRQHandler() { /* DMA Transfer complete */ /* ...and disable this DMA channel */ USART1->CR3 &= ~USART_CR3_DMAR_Msk; DMA1_Channel3->CCR &= ~DMA_CCR_EN_Msk; /* Kick off formatting code in main loop outside interrupt context */ fb_op = FB_FORMAT; DMA1->IFCR |= DMA_IFCR_CGIF3; /* re-enable receive interrupt */ USART1->RQR |= USART_RQR_RXFRQ; USART1->CR1 |= USART_CR1_RXNEIE; } void uart_config(void) { USART1->CR1 = /* 8-bit -> M1, M0 clear */ /* RTOIE clear */ (8 << USART_CR1_DEAT_Pos) /* 8 sample cycles/1 bit DE assertion time */ | (8 << USART_CR1_DEDT_Pos) /* 8 sample cycles/1 bit DE assertion time */ //| USART_CR1_OVER8 FIXME debug? /* CMIF clear */ | USART_CR1_MME /* WAKE clear */ /* PCE, PS clear */ | USART_CR1_RXNEIE /* other interrupts clear */ | USART_CR1_TE | USART_CR1_RE; //USART1->CR2 = USART_CR2_RTOEN; /* Timeout enable */ USART1->CR3 = USART_CR3_DEM; /* RS485 DE enable (output on RTS) */ int usartdiv = 25; USART1->BRR = usartdiv; USART1->CR1 |= USART_CR1_UE; /* Configure DMA for USART frame data reception */ DMA1_Channel3->CPAR = (unsigned int)&USART1->RDR; DMA1_Channel3->CMAR = (unsigned int)rx_buf; DMA1_Channel3->CNDTR = sizeof(rx_buf); DMA1_Channel3->CCR = (0<CCR |= (0<CPAR = (unsigned int)&CRC->DR; DMA1_Channel4->CMAR = (unsigned int)rx_buf; DMA1_Channel4->CCR = (0<CCR |= DMA_CCR_MEM2MEM /* Software trigger (precludes CIRC) */ | DMA_CCR_DIR /* Read from memory */ | (0<CR |= RCC_CR_HSEON; while (!(RCC->CR&RCC_CR_HSERDY)); RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk; RCC->CFGR |= (2< 50.0MHz */ RCC->CFGR2 &= ~RCC_CFGR2_PREDIV_Msk; RCC->CFGR2 |= RCC_CFGR2_PREDIV_DIV2; /* prediv :2 -> 12.5MHz */ RCC->CR |= RCC_CR_PLLON; while (!(RCC->CR&RCC_CR_PLLRDY)); RCC->CFGR |= (2<AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_DMAEN | RCC_AHBENR_CRCEN; RCC->APB2ENR |= RCC_APB2ENR_SPI1EN | RCC_APB2ENR_USART1EN; RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; GPIOA->MODER |= (2<OSPEEDR |= (2<AFR[0] |= (1<PUPDR |= (2<brightness = 1; for (int i=0; idata)/sizeof(uint32_t); i++) { read_fb->data[i] = 0xffffffff; /* FIXME DEBUG 0x00000000; */ } cfg_timer3(); SysTick_Config(SystemCoreClock/1000); /* 1ms interval */ uart_config(); uint8_t i=0; int last_sys_time=0; while (42) { led_state = (sys_time>>8)&7; last_sys_time = sys_time; if (fb_op == FB_FORMAT) { CRC->CR |= CRC_CR_RESET; DMA1_Channel4->CNDTR = sizeof(struct framebuf); DMA1_Channel4->CCR |= DMA_CCR_EN; transpose_data(rx_buf, write_fb); while (!(DMA1->ISR & DMA_ISR_TCIF4)) ; DMA1->IFCR |= DMA_IFCR_CGIF4; DMA1_Channel4->CCR &= ~DMA_CCR_EN_Msk; if (CRC->DR != *(uint32_t *)(rx_buf+sizeof(struct framebuf))) { fb_op = FB_WRITE; errcnt++; } fb_op = FB_UPDATE; while (fb_op == FB_UPDATE) ; } } } void NMI_Handler(void) { } void HardFault_Handler(void) __attribute__((naked)); void HardFault_Handler() { asm volatile ("bkpt"); } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { sys_time++; }