#pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wstrict-aliasing" #include #include #include #pragma GCC diagnostic pop #include #include #include #include #include #include "transpose.h" /* * Part number: STM32F030F4C6 */ typedef struct { volatile uint32_t CTRL; /*!< Offset: 0x000 (R/W) Control Register */ volatile uint32_t CYCCNT; /*!< Offset: 0x004 (R/W) Cycle Count Register */ volatile uint32_t CPICNT; /*!< Offset: 0x008 (R/W) CPI Count Register */ volatile uint32_t EXCCNT; /*!< Offset: 0x00C (R/W) Exception Overhead Count Register */ volatile uint32_t SLEEPCNT; /*!< Offset: 0x010 (R/W) Sleep Count Register */ volatile uint32_t LSUCNT; /*!< Offset: 0x014 (R/W) LSU Count Register */ volatile uint32_t FOLDCNT; /*!< Offset: 0x018 (R/W) Folded-instruction Count Register */ volatile uint32_t PCSR; /*!< Offset: 0x01C (R/ ) Program Counter Sample Register */ volatile uint32_t COMP0; /*!< Offset: 0x020 (R/W) Comparator Register 0 */ volatile uint32_t MASK0; /*!< Offset: 0x024 (R/W) Mask Register 0 */ volatile uint32_t FUNCTION0; /*!< Offset: 0x028 (R/W) Function Register 0 */ uint32_t RESERVED0[1]; volatile uint32_t COMP1; /*!< Offset: 0x030 (R/W) Comparator Register 1 */ volatile uint32_t MASK1; /*!< Offset: 0x034 (R/W) Mask Register 1 */ volatile uint32_t FUNCTION1; /*!< Offset: 0x038 (R/W) Function Register 1 */ uint32_t RESERVED1[1]; } DWT_Type; #define DWT ((DWT_Type *)0xE0001000) DWT_Type *dwt = DWT; void dwt0_configure(volatile void *addr) { dwt->COMP0 = (uint32_t)addr; dwt->MASK0 = 0; } enum DWT_Function { DWT_R = 5, DWT_W = 6, DWT_RW = 7 }; void dwt0_enable(enum DWT_Function function) { dwt->FUNCTION0 = function; } /* Wait for about 0.2us */ static void tick(void) { /* 1 */ /* 2 */ /* 3 */ /* 4 */ /* 5 */ /* 5 */ __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); /* 10 */ __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); __asm__("nop"); } void spi_send(int data) { SPI1->DR = data; while (SPI1->SR & SPI_SR_BSY); } void strobe_aux(void) { GPIOA->BSRR = GPIO_BSRR_BS_10; tick(); GPIOA->BSRR = GPIO_BSRR_BR_10; } void strobe_leds(void) { GPIOA->BSRR = GPIO_BSRR_BS_9; tick(); GPIOA->BSRR = GPIO_BSRR_BR_9; } #define FIRMWARE_VERSION 1 #define HARDWARE_VERSION 1 #define TS_CAL1 (*(uint16_t *)0x1FFFF7B8) #define VREFINT_CAL (*(uint16_t *)0x1FFFF7BA) volatile int16_t adc_vcc_mv = 0; volatile int16_t adc_temp_tenth_celsius = 0; volatile uint16_t adc_buf[2]; volatile unsigned int sys_time = 0; volatile unsigned int sys_time_seconds = 0; volatile struct framebuf fb[2] = {0}; volatile struct framebuf *read_fb=fb+0, *write_fb=fb+1; volatile int led_state = 0; volatile enum { FB_WRITE, FB_FORMAT, FB_UPDATE } fb_op; volatile union { struct __attribute__((packed)) { struct framebuf fb; uint8_t end[0]; } set_fb_rq; struct __attribute__((packed)) { uint8_t nbits; uint8_t end[0]; } set_nbits_rq; uint8_t byte_data[0]; } rx_buf; volatile union { struct { uint32_t magic; } ping_reply; struct __attribute__((packed)) { uint8_t firmware_version, hardware_version, digit_rows, digit_cols; uint32_t uptime; uint32_t millifps; int16_t vcc_mv, temp_tenth_celsius; uint8_t nbits; } desc_reply; } tx_buf; extern uint8_t bus_addr; #define LED_COMM 0x0001 #define LED_ERROR 0x0002 #define LED_ID 0x0004 #define SR_ILED_HIGH 0x0080 #define SR_ILED_LOW 0x0040 unsigned int stk_start(void) { return SysTick->VAL; } unsigned int stk_end(unsigned int start) { return (start - SysTick->VAL) & 0xffffff; } unsigned int stk_microseconds(void) { return sys_time*1000 + (1000 - (SysTick->VAL / (SystemCoreClock/1000000))); } enum { SPI_AUX, SPI_WORD0, SPI_WORD1, SPI_IDLE, } spi_state; static volatile uint32_t spi_word = 0; void cfg_spi1() { /* Configure SPI controller */ SPI1->I2SCFGR = 0; SPI1->CR2 &= ~SPI_CR2_DS_Msk; SPI1->CR2 &= ~SPI_CR2_DS_Msk; SPI1->CR2 |= LL_SPI_DATAWIDTH_16BIT; /* Baud rate PCLK/2 -> 25MHz */ SPI1->CR1 = SPI_CR1_BIDIMODE | SPI_CR1_BIDIOE | SPI_CR1_SSM | SPI_CR1_SSI | SPI_CR1_SPE | (0<BSRR = GPIO_BSRR_BS_0; // Debug switch (spi_state) { case SPI_AUX: strobe_aux(); SPI1->DR = spi_word>>16; break; case SPI_WORD0: SPI1->DR = spi_word&0xFFFF; break; default: tick(); /* This one is important. Otherwise, weird stuff happens and parts of the aux register seem to leak into the driver registers. */ strobe_leds(); SPI1->CR2 &= ~SPI_CR2_TXEIE; break; } spi_state ++; GPIOA->BSRR = GPIO_BSRR_BR_0; // Debug } uint8_t segment_map[8] = {5, 7, 6, 4, 1, 3, 0, 2}; static volatile int frame_duration_us; volatile int nbits = MAX_BITS; /* returns new bit time in cycles */ int shift_data() { static int active_segment = 0; static unsigned int active_bit = 0; static unsigned int last_frame_time; /* Note: On boot, multiplexing will start with bit 1 due to the next few lines. This is perfectly ok. */ active_bit++; if (active_bit >= nbits) { active_bit = 0; active_segment++; if (active_segment == NSEGMENTS) { active_segment = 0; int time = stk_microseconds(); frame_duration_us = time - last_frame_time; last_frame_time = time; if (fb_op == FB_UPDATE) { volatile struct framebuf *tmp = read_fb; read_fb = write_fb; write_fb = tmp; fb_op = FB_WRITE; } } spi_word = read_fb->data[active_bit*FRAME_SIZE_WORDS + active_segment]; spi_state = SPI_AUX; SPI1->DR = (read_fb->brightness ? SR_ILED_HIGH : SR_ILED_LOW) | (led_state<<1) | (0xff00 ^ (0x100<data[active_bit*FRAME_SIZE_WORDS + active_segment]; spi_state = SPI_WORD0; SPI1->DR = spi_word>>16; } SPI1->CR2 |= SPI_CR2_TXEIE; return active_bit; } #define NBITS_MAX 14 /* Bit timing base value. This is the lowes bit interval used */ #define PERIOD_BASE 4 /* This value is a constant offset added to every bit period to allow for the timer IRQ handler to execute. This is set * empirically using a debugger and a logic analyzer. */ #define TIMER_CYCLES_FOR_SPI_TRANSMISSIONS 25 /* Defines for brevity */ #define A TIMER_CYCLES_FOR_SPI_TRANSMISSIONS #define B PERIOD_BASE /* This is a constant offset containing some empirically determined correction values */ #define C (0) /* This lookup table maps bit positions to timer period values. This is a lookup table to allow for the compensation for * non-linear effects of ringing at lower bit durations. */ static uint16_t timer_period_lookup[NBITS_MAX] = { /* LSB here */ A - C + (B<< 0), A - C + (B<< 1), A - C + (B<< 2), A - C + (B<< 3), A - C + (B<< 4), A - C + (B<< 5), A - C + (B<< 6), A - C + (B<< 7), A - C + (B<< 8), A - C + (B<< 9), A - C + (B<<10), A - C + (B<<11), A - C + (B<<12), A - C + (B<<13), /* MSB here */ }; /* Don't pollute the global namespace */ #undef A #undef B #undef C void cfg_timer3() { /* FIXME update comment */ /* Capture/compare channel 1 is used to generate the LED driver !OE signal. Channel 2 is used to trigger the * interrupt to load the next bits in to the shift registers. Channel 2 triggers simultaneously with channel 1 at * long !OE periods but will be delayed slightly to a fixed 32 timer periods (12.8us) to allow for SPI1 to finish * shifting out all frame data before asserting !OE. */ TIM3->CCMR1 = (6<CCER = TIM_CCER_CC1E; /* Inverting output */ TIM3->DIER = TIM_DIER_UIE; TIM3->PSC = SystemCoreClock/5000000 * 2 - 1; /* 0.20us/tick */ TIM3->ARR = 0xffff; TIM3->EGR |= TIM_EGR_UG; TIM3->CR1 = TIM_CR1_ARPE; TIM3->CR1 |= TIM_CR1_CEN; NVIC_EnableIRQ(TIM3_IRQn); NVIC_SetPriority(TIM3_IRQn, 2); } void TIM3_IRQHandler() { GPIOA->BSRR = GPIO_BSRR_BS_4; // Debug //TIM3->CR1 &= ~TIM_CR1_CEN_Msk; FIXME int idx = shift_data(); TIM3->CCR1 = TIMER_CYCLES_FOR_SPI_TRANSMISSIONS; TIM3->ARR = timer_period_lookup[idx]; TIM3->SR &= ~TIM_SR_UIF_Msk; //TIM3->CR1 |= TIM_CR1_CEN; GPIOA->BSRR = GPIO_BSRR_BR_4; // Debug } enum Command { CMD_PING, CMD_SET_FB, CMD_SET_NBITS, CMD_GET_DESC, N_CMDS }; /* tx_buf.desc_reply.firmware_version = FIRMWARE_VERSION; tx_buf.desc_reply.hardware_version = HARDWARE_VERSION; tx_buf.desc_reply.digit_rows = NROWS; tx_buf.desc_reply.digit_cols = NCOLS; tx_buf.desc_reply.uptime = sys_time_seconds; tx_buf.desc_reply.vcc_mv = adc_vcc_mv; tx_buf.desc_reply.temp_tenth_celsius = adc_temp_tenth_celsius; tx_buf.desc_reply.nbits = nbits; tx_buf.desc_reply.millifps = frame_duration_us > 0 ? 1000000000 / frame_duration_us : 0; */ void uart_config(void) { USART1->CR1 = /* 8-bit -> M1, M0 clear */ /* RTOIE clear */ (8 << USART_CR1_DEAT_Pos) /* 8 sample cycles/1 bit DE assertion time */ | (8 << USART_CR1_DEDT_Pos) /* 8 sample cycles/1 bit DE assertion time */ //| USART_CR1_OVER8 FIXME debug? /* CMIF clear */ | USART_CR1_MME /* WAKE clear */ /* PCE, PS clear */ | USART_CR1_RXNEIE /* other interrupts clear */ | USART_CR1_TE | USART_CR1_RE; //USART1->CR2 = USART_CR2_RTOEN; /* Timeout enable */ USART1->CR3 = USART_CR3_DEM /* RS485 DE enable (output on RTS) */ | USART_CR3_DMAT; int usartdiv = 25; USART1->BRR = usartdiv; USART1->CR1 |= USART_CR1_UE; } #define ADC_OVERSAMPLING 12 uint32_t vsense; void DMA1_Channel1_IRQHandler(void) { static int count = 0; static uint32_t adc_aggregate[2] = {0, 0}; DMA1->IFCR |= DMA_IFCR_CGIF1; adc_aggregate[0] += adc_buf[0]; adc_aggregate[1] += adc_buf[1]; if (count++ == (1<>ADC_OVERSAMPLING); vsense = ((adc_aggregate[1]>>ADC_OVERSAMPLING) * adc_vcc_mv)/4095 ; adc_temp_tenth_celsius = 300 - (((TS_CAL1*adc_vcc_mv/4095) - vsense)*100)/43; count = 0; adc_aggregate[0] = 0; adc_aggregate[1] = 0; } } void adc_config(void) { ADC1->CFGR1 = ADC_CFGR1_CONT | ADC_CFGR1_DMAEN | ADC_CFGR1_DMACFG; ADC1->CFGR2 = 2<SMPR = 7<CHSELR = ADC_CHSELR_CHSEL16 | ADC_CHSELR_CHSEL17; ADC->CCR = ADC_CCR_TSEN | ADC_CCR_VREFEN; ADC1->CR |= ADC_CR_ADCAL; while (ADC1->CR & ADC_CR_ADCAL) ; ADC1->CR |= ADC_CR_ADEN; ADC1->CR |= ADC_CR_ADSTART; /* FIXME handle adc overrun */ DMA1_Channel1->CPAR = (unsigned int)&ADC1->DR; DMA1_Channel1->CMAR = (unsigned int)&adc_buf; DMA1_Channel1->CNDTR = sizeof(adc_buf)/sizeof(adc_buf[0]); DMA1_Channel1->CCR = (0<CCR |= DMA_CCR_CIRC | (1<CCR |= DMA_CCR_EN; NVIC_EnableIRQ(DMA1_Channel1_IRQn); NVIC_SetPriority(DMA1_Channel1_IRQn, 6); } int main(void) { RCC->CR |= RCC_CR_HSEON; while (!(RCC->CR&RCC_CR_HSERDY)); RCC->CFGR &= ~RCC_CFGR_PLLMUL_Msk & ~RCC_CFGR_SW_Msk & ~RCC_CFGR_PPRE_Msk & ~RCC_CFGR_HPRE_Msk; RCC->CFGR |= (2< 50.0MHz */ RCC->CFGR2 &= ~RCC_CFGR2_PREDIV_Msk; RCC->CFGR2 |= RCC_CFGR2_PREDIV_DIV2; /* prediv :2 -> 12.5MHz */ RCC->CR |= RCC_CR_PLLON; while (!(RCC->CR&RCC_CR_PLLRDY)); RCC->CFGR |= (2<AHBENR |= RCC_AHBENR_GPIOAEN | RCC_AHBENR_DMAEN | RCC_AHBENR_CRCEN | RCC_AHBENR_FLITFEN; RCC->APB2ENR |= RCC_APB2ENR_SPI1EN | RCC_APB2ENR_USART1EN | RCC_APB2ENR_SYSCFGEN | RCC_APB2ENR_ADCEN | RCC_APB2ENR_DBGMCUEN; RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; GPIOA->MODER |= (1<OSPEEDR |= (2<AFR[0] |= (1<PUPDR |= (2<brightness = 1; for (int i=0; idata)/sizeof(uint32_t); i++) { read_fb->data[i] = 0xffffffff; /* FIXME DEBUG 0x00000000; */ } cfg_timer3(); SysTick_Config(SystemCoreClock/1000); /* 1ms interval */ uart_config(); adc_config(); volatile uint8_t *rxd = rx_buf.byte_data; while (42) { if (USART1->ISR & USART_ISR_RXNE) { *rxd++ = USART1->RDR; if (rxd >= rx_buf.set_fb_rq.end) { rxd = rx_buf.byte_data; if (fb_op == FB_FORMAT) { transpose_data(rx_buf.byte_data, write_fb); fb_op = FB_UPDATE; } } } } } void NMI_Handler(void) { } void HardFault_Handler(void) __attribute__((naked)); void HardFault_Handler() { asm volatile ("bkpt"); } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { static int n = 0; sys_time++; if (n++ == 1000) { n = 0; sys_time_seconds++; } }