diff options
Diffstat (limited to 'fw/serial.c')
-rw-r--r-- | fw/serial.c | 255 |
1 files changed, 255 insertions, 0 deletions
diff --git a/fw/serial.c b/fw/serial.c new file mode 100644 index 0000000..fc797e3 --- /dev/null +++ b/fw/serial.c @@ -0,0 +1,255 @@ +/* Megumin LED display firmware + * Copyright (C) 2018 Sebastian Götte <code@jaseg.net> + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include "serial.h" +#include "adc.h" +#include "mac.h" +#include "led.h" + +unsigned int uart_overruns = 0; +unsigned int frame_overruns = 0; +unsigned int invalid_frames = 0; + +static union tx_buf_union tx_buf; +volatile union rx_buf_union rx_buf; + +void serial_init() { + USART1->CR1 = /* 8-bit -> M1, M0 clear */ + /* RTOIE clear */ + (8 << USART_CR1_DEAT_Pos) /* 8 sample cycles/1 bit DE assertion time */ + | (8 << USART_CR1_DEDT_Pos) /* 8 sample cycles/1 bit DE assertion time */ + /* OVER8 clear. Use default 16x oversampling */ + /* CMIF clear */ + | USART_CR1_MME + /* WAKE clear */ + /* PCE, PS clear */ + | USART_CR1_RXNEIE /* Enable receive interrupt */ + /* other interrupts clear */ + | USART_CR1_TE + | USART_CR1_RE; + //USART1->CR2 = USART_CR2_RTOEN; /* Timeout enable */ + USART1->CR3 = USART_CR3_DEM; /* RS485 DE enable (output on RTS) */ + /* Set divider for 25MHz baud rate @50MHz system clock. */ + int usartdiv = 25; + USART1->BRR = usartdiv; + + /* And... go! */ + USART1->CR1 |= USART_CR1_UE; + + /* Enable receive interrupt */ + NVIC_EnableIRQ(USART1_IRQn); + NVIC_SetPriority(USART1_IRQn, 1); +} + +void tx_char(uint8_t c) { + while (!(USART1->ISR & USART_ISR_TC)); + USART1->TDR = c; +} + +void send_frame_formatted(uint8_t *buf, int len) { + uint8_t *p=buf, *q=buf, *end=buf+len; + do { + while (*q && q!=end) + q++; + tx_char(q-p+1); + while (*p && p!=end) + tx_char(*p++); + p++, q++; + } while (p < end); + tx_char('\0'); +} + +void send_status_reply(void) { + tx_buf.desc_reply.firmware_version = FIRMWARE_VERSION; + tx_buf.desc_reply.hardware_version = HARDWARE_VERSION; + tx_buf.desc_reply.digit_rows = NROWS; + tx_buf.desc_reply.digit_cols = NCOLS; + tx_buf.desc_reply.uptime_s = sys_time_seconds; + tx_buf.desc_reply.vcc_mv = adc_vcc_mv; + tx_buf.desc_reply.temp_celsius = adc_temp_celsius; + tx_buf.desc_reply.nbits = nbits; + tx_buf.desc_reply.framerate_millifps = frame_duration_us > 0 ? 1000000000 / frame_duration_us : 0; + tx_buf.desc_reply.uart_overruns = uart_overruns; + tx_buf.desc_reply.frame_overruns = frame_overruns; + tx_buf.desc_reply.invalid_frames = invalid_frames; + send_frame_formatted(tx_buf.byte_data, sizeof(tx_buf.desc_reply)); +} + +/* This is the higher-level protocol handler for the serial protocol. It gets passed the number of data bytes in this + * frame (which may be zero) and returns a pointer to the buffer where the next frame should be stored. + */ +volatile uint8_t *packet_received(int len) { + static enum { + PROT_ADDRESSED = 0, + PROT_EXPECT_FRAME_SECOND_HALF = 1, + PROT_IGNORE = 2, + } protocol_state = PROT_IGNORE; + /* Use mac frames as delimiters to synchronize this protocol layer */ + trigger_comm_led(); + if (len == 0) { /* Discovery packet */ + if (sys_time < 100 && sys_time_seconds == 0) { /* Only respond during the first 100ms after boot */ + send_frame_formatted((uint8_t*)&device_mac, sizeof(device_mac)); + } + + } else if (len == 1) { /* Command packet */ + if (protocol_state == PROT_ADDRESSED) { + switch (rx_buf.byte_data[0]) { + case 0x01: + GPIOA->BSRR = GPIO_BSRR_BS_4; // Debug + //for (int i=0; i<100; i++) + // tick(); + send_status_reply(); + GPIOA->BSRR = GPIO_BSRR_BR_4; // Debug + break; + } + } else { + invalid_frames++; + trigger_error_led(); + } + protocol_state = PROT_IGNORE; + + } else if (len == 4) { /* Address packet */ + if (rx_buf.mac_data == device_mac) { /* we are addressed */ + protocol_state = PROT_ADDRESSED; /* start listening for frame buffer data */ + } else { /* we are not addressed */ + protocol_state = PROT_IGNORE; /* ignore packet */ + } + + } else if (len == sizeof(rx_buf.set_fb_rq)/2) { + if (protocol_state == PROT_ADDRESSED) { /* First of two half-framebuffer data frames */ + protocol_state = PROT_EXPECT_FRAME_SECOND_HALF; + /* Return second half of receive buffer */ + return rx_buf.byte_data + (sizeof(rx_buf.set_fb_rq)/2); + + } else if (protocol_state == PROT_EXPECT_FRAME_SECOND_HALF) { /* Second of two half-framebuffer data frames */ + /* Kick off buffer transfer. This triggers the main loop to copy data out of the receive buffer and paste it + * properly formatted into the frame buffer. */ + if (fb_op == FB_WRITE) { + fb_op = FB_FORMAT; + trigger_id_led(); + } else { + /* FIXME An overrun happend. What should we do? */ + frame_overruns++; + trigger_error_led(); + } + + /* Go to "hang mode" until next zero-length packet. */ + protocol_state = PROT_IGNORE; + } + + } else { + /* FIXME An invalid packet has been received. What should we do? */ + invalid_frames++; + trigger_error_led(); + protocol_state = PROT_IGNORE; /* go into "hang mode" until next zero-length packet */ + } + + /* By default, return rx_buf.byte_data . This means if an invalid protocol state is reached ("hang mode"), the next + * frame is still written to rx_buf. This is not a problem since whatever garbage is written at that point will be + * overwritten before the next buffer transfer. */ + return rx_buf.byte_data; +} + +void USART1_IRQHandler(void) { + /* Since a large amount of data will be shoved down this UART interface we need a more reliable and more efficient + * way of framing than just waiting between transmissions. + * + * This code uses "Consistent Overhead Byte Stuffing" (COBS). For details, see its Wikipedia page[0] or the proper + * scientific paper[1] published on it. Roughly, it works like this: + * + * * A frame is at most 254 bytes in length. + * * The null byte 0x00 acts as a frame delimiter. There is no null bytes inside frames. + * * Every frame starts with an "overhead" byte indicating the number of non-null payload bytes until the next null + * byte in the payload, **plus one**. This means this byte can never be zero. + * * Every null byte in the payload is replaced by *its* distance to *its* next null byte as above. + * + * This means, at any point the receiver can efficiently be synchronized on the next frame boundary by simply + * waiting for a null byte. After that, only a simple state machine is necessary to strip the overhead byte and a + * counter to then count skip intervals. + * + * Here is Wikipedia's table of example values: + * + * Unencoded data Encoded with COBS + * 00 01 01 00 + * 00 00 01 01 01 00 + * 11 22 00 33 03 11 22 02 33 00 + * 11 22 33 44 05 11 22 33 44 00 + * 11 00 00 00 02 11 01 01 01 00 + * 01 02 ...FE FF 01 02 ...FE 00 + * + * [0] https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing + * [1] Cheshire, Stuart; Baker, Mary (1999). "Consistent Overhead Byte Stuffing" + * IEEE/ACM Transactions on Networking. doi:10.1109/90.769765 + * http://www.stuartcheshire.org/papers/COBSforToN.pdf + */ + + /* This pointer stores where we write data. The higher-level protocol logic decides on a frame-by-frame-basis where + * the next frame's data will be stored. */ + static volatile uint8_t *writep = rx_buf.byte_data; + /* Index inside the current frame payload */ + static int rxpos = 0; + /* COBS state machine. This implementation might be a little too complicated, but it works well enough and I find it + * reasonably easy to understand. */ + static enum { + COBS_WAIT_SYNC = 0, /* Synchronize with frame */ + COBS_WAIT_START = 1, /* Await overhead byte */ + COBS_RUNNING = 2 /* Process payload */ + } cobs_state = 0; + /* COBS skip counter. During payload processing this contains the remaining non-null payload bytes */ + static int cobs_count = 0; + + if (USART1->ISR & USART_ISR_ORE) { /* Overrun handling */ + uart_overruns++; + trigger_error_led(); + /* Reset and re-synchronize. Retry next frame. */ + rxpos = 0; + cobs_state = COBS_WAIT_SYNC; + /* Clear interrupt flag */ + USART1->ICR = USART_ICR_ORECF; + + } else { /* Data received */ + uint8_t data = USART1->RDR; /* This automatically acknowledges the IRQ */ + + if (data == 0x00) { /* End-of-packet */ + /* Process higher protocol layers on this packet. */ + writep = packet_received(rxpos); + + /* Reset for next packet. */ + cobs_state = COBS_WAIT_START; + rxpos = 0; + + } else { /* non-null byte */ + if (cobs_state == COBS_WAIT_SYNC) { /* Wait for null byte */ + /* ignore data */ + + } else if (cobs_state == COBS_WAIT_START) { /* Overhead byte */ + cobs_count = data; + cobs_state = COBS_RUNNING; + + } else { /* Payload byte */ + if (--cobs_count == 0) { /* Skip byte */ + cobs_count = data; + data = 0; + } + + /* Write processed payload byte to current receive buffer */ + writep[rxpos++] = data; + } + } + } +} + |